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CHAPTER ONE 

INTRODUCTION 

Background and Motivation 

In radiotherapy, lung tumor localization is of great concern due to unavoidable 

respiratory motion. Respiratory gating techniques have been developed over the years to 

increase the radiation dose to the tumor while reducing radiation to the adjacent healthy 

tissues. In our clinic, an abdominal belt is used as an external marker to record the 

correlation between the phase and location of the tumor during the kilo-voltage (KV) 

treatment planning CT scan. During each treatment, the cranio-caudal position of the 

tumor will be determined by the pressure on a strain gauge placed under an abdominal 

belt. Physicians can determine when to turn the beam on or off based on tumor position.  

Although various attempts have been made to quantify the correlation between 

external abdominal signals and tumor motion [35, 1], it is reported that various 

respiratory phase delays occur for external markers for patients having impaired lung 

function [20, 26], which makes the external marker not fully reliable. These studies are 

based on the assumption of direct tumor-diaphragm relationship. If we can accurately 

locate the position of the diaphragm apex, it will be a more powerful method of 

characterizing respiration, since the amplitude of motion can be determined, while 

external markers such as strain gauges only provide relative phase information [32]. 

With the recent development of megavoltage cone beam CT (MVCBCT) systems, 

accurate daily localization can be derived by registering the reconstructed 3D MV CT 

with the planning KV CT before each treatment. The changes in tumor shape, size and 
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position during the course of treatment can be monitored by registering daily localization 

3D MVCBCT images with planning KV CT images [25]. Studies on the feasibility of 

tracking objects in MV portal images suggested that it is possible to track diaphragm 

motion in MVCBCT raw projection images [21]. In our current clinic, physicians should 

identify the position of the diaphragm manually for each projection image. This is time 

consuming which made it impossible to apply clinically as there is a strict time limit for 

patient localization before treatment. Xu et al. developed an optical flow method to track 

lung tumors in fluoroscopic videos [38]. However, a tumor contour in the initial reference 

frame is needed to be drawn by a clinician or transferred from digitally reconstructed 

radiographs. Keatley et al. developed a diaphragm tracking method using active contours 

with dynamic programming on fluoroscopic sequences taken from one gantry angle [17]. 

But the diaphragm contour is only a local energy minima and the process also needs a 

contour and several landmarks drawn by humans. In this work, a computer automated 

diaphragm tracking algorithm is developed and tested on fluoroscopic sequences taken 

with the camera rotating about the patient. The algorithm is guaranteed to find the global 

optimum with fewer human interactions. The result is proved to be robust and accurate. 

The running time satisfies the clinical application. 

The sequence of projection images has the same dynamic features as a video. We 

can fully utilize the algorithms of video processing to solve our problem. The following 

part of this thesis will give a brief review on several important branches of video tracking 

methods. In chapter 2, a brief introduction of MVCBCT projection image and our 

software platform will be introduced. Then I will explain the previous work by Siochi on 

calculating the region of interest (ROI) of the diaphragm apex using CBCT geometry 
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[29]. Then techniques experimented in this work will be described, including image 

filters, dynamic programming (DP) with shortest path, principle component analysis, 

active shape model (ASM), and optimal graph search. Dyanmic Hough transform, the 

method achieving the best result in this work, will be described with emphasis. In chapter 

3, results of the different methods will be illustrated and discussed, including DP with 

shortest path in 2D, ASM, optimal graph search, optimal graph search with edge cost and 

dynamic Hough transform. Future work and unresolved problems are also included in 

that chapter. 

An Overview of tracking methods in an image sequence 

A video is a sequence of images. Each image within this sequence is called a 

frame. Video tracking, sometimes referred to as motion tracking, motion estimates or 

visual tracking in other literature, is an automatic algorithm to locate single or multiple 

moving objects in an image sequence. Automation in various areas such as video 

surveillance and servo, facial recognition, medical imaging and automatic inspection 

requires fast and robust video tracking algorithms. For example, Frank et al. developed a 

traffic video analysis system that can track vehicles on downtown roads with recognition 

of occlusion situations [11]. Harrell et al. developed a fruit-tracking method to estimate 

the size and position of a valid fruit region in real time images to control the motion of a 

fruit-picking robot [12]. Boyer applied video tracking techniques to reconstruct 3D object 

models from image sequences [6].  
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Ideally, the image sequence of a video is continuous. For a digital device, small 

time intervals between adjacent frames exist which makes objects move a small distance 

from one frame to the next. This property is utilized by all the video tracking algorithms. 

It is either represented by smoothness constraints or the speed of motion. The main 

difficulty for video tracking is that there is variation in object location and object 

deformations. The illumination may also change over the frames, which leads to 

changing gray values of the pixels of the same region in two frames. Partial or full 

occlusion of the object may also exist which will cause deviations to object tracking.  

The video tracking algorithm can be generally categorized into two classes. The first is to 

locate and track objects frame by frame throughout image sequence. The second is to 

track objects in all frames simultaneously. Most video tracking algorithms belong to the 

first category. They aim to find a correlation between the adjacent frames. Optical flow 

describes this correlation by displacement velocity. It approximates image motion based 

on the hypothesis that the intensity structure of the same image regions are constant for a 

short duration [5], and it assumes that every small block within the reference frame has a 

velocity to the next frame. A least-square technique is used to calculate this velocity field, 

by minimizing a squared error under restriction of first-order derivatives of the optical 

flow constraint equation [21], or by solving equations of velocity using second-order 

derivatives [24], or by solving velocity equations with combination of local estimates 

[28]. A detailed introduction and comparison of different optical flow techniques can be 

found in [4].  

Similar to optical flow, parametric models also compute the spatial variation of 

two adjacent images. However, it assumes that the optical flow within a region can be 
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represented by a low-order polynomial. This assumption is very close to reality when the 

motion between frames is mainly caused by camera motion, without displacement of the 

local individual object. The parametric model is chosen based on the estimate of global 

motion, such as the six-parameter affine model, eight-parameter quadratic model, eight-

parameter perspective model, etc. The parameters are calculated based on the 

minimization of an error metric, such as squared differences between reference frame and 

transformed moving frame. An initial motion estimation is needed and an iterative 

scheme using gradient descent or other optimization technique is used to update the 

parameters to achieve a local minimum [19, 22].  

Instead of computing displacement for a region, objects in an image sequence can 

be represented by object features, such as an object boundary. Thus, object tracking can 

be achieved by contour tracking. Snake, i.e. parametric active contour model [16], is an 

edge detection technique that locates a spline in large gradient pixels in an image with an 

iterative energy minimization scheme. Given an initial shape, the spline will be adjusted 

at each iteration in nearby regions using Euler’s method. The energy includes external 

constraint forces to attract the spline to the object boundary and internal forces to control 

the smoothness of the curve. As traditional snake methods can only find a local minimum 

of splines near the initial position, many derivative methods of active contour have been 

developed. Xu modified the external force of the snake energy equation by computing a 

gradient vector flow field, enabling a larger capture range. The spline can converge to the 

expected position even if the initial shape is far away [37]. Davi et al. developed a 

dynamic programming scheme to minimize the energy of the contour with a global 

minimum guaranteed. And a multi-scale strategy is used to speed up the search time [10]. 
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In applications in video tracking, a contour will be detected first in the reference frame 

and the result will be the initial contour for the moving frame.  

Sometimes the shape pattern of objects to be tracked is known. We can utilize this 

knowledge as prior information before video tracking. A large set of training data in 

sampled images needs to be derived to get this statistical information. ASM belongs to 

this family and is also a contour tracking algorithm. It uses sets of labeled points to 

represent shapes of objects. The shape in a 2D image represents a point in a higher 

dimensional shape vector space. It detects contours of objects with prior shape 

restrictions computed from training data [34]. The contour to be detected is updated to 

the position closer to the edge boundary using an iterative searching scheme. It will be 

confined into an area near the mean of training contours. Principle Component Analysis 

(PCA) is used to save memory and time while retaining most of the training information 

[34]. Both the advantage and disadvantage of ASM is discussed in [18] with “more active 

shape model” (MASM), an improved technique of ASM.  

The other category of video tracking algorithms is to track objects in all the 

frames simultaneously. Kang et al. developed an optimal graph search algorithm for 3D 

image segmentation. Instead of iterative scheme searching for a local extremum, optimal 

graph search computes a surface within a 3D graph directly with a global minimum of the 

sum of costs of nodes [15]. The surface is guaranteed to be continuous under the 

restriction of the smoothness constraint. The problem of computing this surface is 

converted to finding the maximum-flow between two nodes. There are various algorithms 

that calculate the maximum-flow. A pseudo-flow algorithm developed by Hochbaum [14] 

and the algorithm developed by Boykov and Kolmogorov [39] both have the advantage 
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of saving time and memory and are proved to be superior to traditional maximum-flow 

algorithms such as the Ford-Fulkerson [9] and push-relabel algorithms [2]. 

To sum up, the design of a video tracking method requires consideration in all 

aspects. For example, is an iterative scheme used or not? Is the local optimum or global 

optimum guaranteed? What kind of image filter is used? Is prior information needed? All 

these choices depend on the property of the video image sequence to be processed. For 

example, is the major component of the motion in the image global or local? Is there a 

general shape pattern for the objects to be tracked? Can the objects to be tracked be 

represented by contours? What is the image quality, i.e. what is signal to noise ratio 

(SNR)? In this work, different techniques are tested including dynamic programming 

with path detection, ASM, optimal graph search and parametric shape model with 

dynamic programming. The goal is to develop an algorithm that best fits our special 

application of diaphragm tracking in MVCBCT projection images. The next section will 

analyze the characteristics of these fluoroscopic images. 
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CHAPTER TWO                                                                        

MATERIAL AND METHODS 

Hardware and Software Platform 

In our case, the global motion of the projection image sequence of MVCBCT is 

caused by rotation of the gantry and the image detector. Using the standard cone beam 

protocol, the gantry rotates over 200 degrees from 270° to 110°. Figure 1 is a picture of 

the MVCBCT device used in our clinic. Instead of traditional parallel or fan beams, the 

linac X-ray source produces a cone of rays with its base on the detector and its apex on 

the source. The set of open field 2D projection images are acquired at different positions 

around the patient. The data are acquired with a 2D detector array. The imaging process 

does not need table movement.  

The 2D detector is an amorphous Si flat panel electronic portal imaging device 

(EPID) with resolution of 0.4 × 0.4 mm2. It has an imaging area of 27.4 × 27.4 cm2 at the 

patient plane and an image size of 1024 × 1024, providing a pixel size of 0.027 cm. This 

resolution is enough for the motion being tracked. The distance between the source and 

isocenter (Source to Axis Distance, SAD) is 100 cm and 145 cm for source and EPID 

(SID) [31]. The EPID acquires one 2D projection image per degree of rotation. In the 

clinic, 200 raw projection images are acquired over 200 degrees while the gantry rotates 

in order to have sufficient data for 3D cone-beam reconstruction. So each frame is one 

image projected from a certain angle. 
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Figure 1: Siemens Mvision MVCBCT device used in the Department of Radiation 
Oncology in the University of Iowa Hospital 

The local motion is the respiratory displacement of the lung and other nearby 

organs such as the liver and the heart. The diaphragm has a general curve pattern opening 

up in the inferior direction and it can be delineated by a contour. It will be discussed in 

later paragraphs that this general curve pattern of the diaphragm can be well represented 

by a parabola. The contrast of MV CBCT images is relatively low compared to KVCT 

because Compton scattering provides the majority of the beam attenuation [25]. And 

there are many confounding objects near the diaphragm like the contralateral lung, heart, 

spine, and treatment table which will cause deviation to the tracking process.  

The total imaging time is 50 seconds which is 0.25s for each view. Typically a 

patient with training takes 16 complete cycles to be observed with 200 views [31]. The 

range of diaphragm motion in the superior-inferior (SI) direction is between 0.5 and 3.0 
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cm. Using the respiratory frequency, the speed of diaphragm motion can be calculated by 

the following equation: 

 

1/ 2
frame

R SAD
v

N SID
= ⋅                                                      (2.1) 

 

Where R  is the displacement of the diaphragm apex between full exhale and full 

inhale frames. 1/2N  is the number of frames for a half respiratory cycle. With this 

information, we can get a rough estimate of the diaphragm motion to be tracked. For 

example, if there is a typical patient with 16 cycles during the imaging process and 

0.75R cm= , 12.5 frames for each cycle, i.e. 1/ 2 6.25N frames=  can be derived. So 

0.12 /framev cm frame= , i.e.4.44 /pixel frame . Note that this calculation is based on two 

approximations. One is that the diaphragm motion is assumed to be at SAD distance to 

the X-ray source. The second is that this equation leads to the average speed. But in fact, 

the diaphragm cannot be exactly at SAD distance and the motion is slow at full inhale 

and full exhale positions while fast in the intervals between these positions.  

Dr. Siochi has developed a software application called Just Enough Dicom (JED) 

before this work. The software can read DICOM files of projection images imported from 

MVCBCT. It is developed in Microsoft Visual Basic 2008 and it provides a Windows 

interface that allows users to do multiple operations such as reading, viewing the images 

and analyzing the diaphragm tracking result. All of the diaphragm tracking techniques in 

this work is implemented on this platform. A typical interface of JED is shown in Figure 

2. The projection image is shown on the right. On the left there are grids representing 
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coordinates. And two diagrams of position of diaphragm apex are shown. The top one is 

in the SI direction while the bottom one is in the horizontal direction in the image plane. 

There are menu bars on the top which controls the view and diaphragm tracking. The 

status bars are at the bottom indicating the frame and pixel information. 

 

 
Figure 2: Windows interface of Just Enough Dicom (JED) 

Computation of ROI 

A projection image covers a large area, including at least one of the lungs and its 

adjacent organs. It is unnecessary and time consuming to search through the whole image 

for the diaphragm apex. A robust method to locate the ROI is needed. In this section the 

technique of computing the ROI of the diaphragm apex developed by Siochi is described 

[32, 29]. In Siochi’s method, four positions of the diaphragm apex are needed to calculate 
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the ROI: two full inhale and two full exhale in the corresponding respiratory cycles. The 

two cycles are recommended to be about 90°apart. Positions of the diaphragm apex in 

full inhale and full exhale in 3D that define the range of diaphragm apex motion are 

computed from these four points based on CBCT geometry. Then these two points are 

projected into every 2D frame and a rectangle defined by the two points for each frame is 

derived. This rectangle is the ROI for the diaphragm apex for each frame. The procedure 

of this method is illustrated in the following figure: 

 

 
Figure 3: The illustration of computing ROI for each frame  

Image from [30] 

The CBCT geometry used in this method is illustrated in Figure 4. It is a picture 

showing that both the X-ray source and image detector rotate about the isocenter, which 

is considered as the origin of the 3D coordinates. The X and Y axes are in the paper plane 

and the Z axis is perpendicular to the paper plane.  First the user identifies the projected 

diaphragm apex in the flat image detector with 3D coordinates ( , , )o o ox y z . The 

horizontal distance from this point to the center of the image detector is oR . The center of 

the image detector is actually the projected isocenter in this frame. The first step is to 

project user identified points onto a plane called the minified view at SAD. It is a plane 
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parallel to the detector and has the distance of SAD to the source. The projected point is 

( , , )p p px y z  which is the intersection of this plane and the line through the source and 

( , , )o o ox y z . The distance from ( , , )p p px y z  to isocenter is pR . From simple trigonometry, 

( , , )p p px y z  and pR  can be derived from ( , , )o o ox y z  and oR  using following equations: 

 

1 1 2 2

1 1 1 1 1 1 2 2 2 2 2 2

1 1 2 2

;

cos ; sin ; cos ; sin

;

p o p o

p p p p p p p p

p o p o

SAD SAD
R R R R

SID SID
x R y R x R y R

SAD SAD
z z z z

SID SID

θ θ θ θ

= =

= = = =

= =

           (2.2) 

 

Where 1θ  and 2θ  are rotation angles between the image plane and the X axis 

illustrated in Figure 4. The subscripts 1 and 2 correspond to two frames in different 

respiratory cycles (For conciseness, Figure 4 only shows coordinates in one frame). Now 

two points at the minified view at SAD are calculated and the position of the source can 

be calculated as: 

 

1 1 1 1 2 2 2 2sin ; cos ; sin ; cos ;s s s sx SAD y SAD x SAD y SADθ θ θ θ= − ⋅ = ⋅ = − ⋅ = ⋅      (2.3) 

 

Now for each frame, a line can be determined by the source and point in minified 

view. Ideally, if the position of diaphragm apex will reach the same position in every full 

exhale and inhale time, the lines in these two frames will intersect with each other. 

However, there is some irregularity and movement during respiration even for a trained 

patient. And the motion is sampled at 0.25s by MVCBCT. These factors lead to the fact 

that the two lines are not coplanar. In order to calculate the position of the diaphragm 

apex in 3D, we project these two lines in the paper plane and calculate the point of 
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intersection in 2D to determine dx  and dy . For the Z direction, we use the average of the 

two values of dz  at ( , )d dx y  along lines. So ( , , )d d dx y z  can be calculated as: 

 

1 1 2 2
1 2

1 1 2 2

2 1 2 2 1 1
1 1 1

1 2

1 1 1 2 2 2

1 2 1 2
1 1 2 2

;

( ); ;

sin cos ; sin cos

( ) ( )
; ;

2

p s p s

p s p s

s s s s
d s d s d

f d d f d d

f f d d
d p d p d

x x x x
m m

y y y y

x x m y m y
x x m y y y

m m

y x y y x y

SAD y SAD y z z
z z z z z

SAD SAD

θ θ θ θ

− −
= =

− −

− − +
= + − =

−

= − + = − +

− − +
= = =

                         (2.4) 

 

Where 1m , 2m , 1fy , 2fy  are temporary variables and 1m  and 2m  are the inverse 

of the slopes of the two lines. 1fy  and 2fy  are the distances of ( , )d dx y  to the plane on 

the minified view. So the actual positions of diaphragm apex during full inhale and full 

exhale are derived. For each frame, if we project these two points to the detector plane, 

we can use the projected points as the diagonal vertices of a rectangle. This rectangle is 

exactly the ROI we want. For an arbitrary frame with rotation angle θ , the coordinates of 

the projected points can be calculated as  

 

sin ; cos

sin cos

;
cos sin

;

s s

s d
s

s d

f d d

d s d
p

s

o p o o
f

x SAD y SAD

x x
m

y y

y x y

x m y
R

m

SID SID
R R z z

SAD SAD y

θ θ

θ θ

θ θ

= − ⋅ = ⋅

−
=

−

= − +

−
=

−

= =
−

                                         (2.5) 
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Where ( , )o oR z  is the projected position of diaphragm apex in full exhale or full 

inhale in the image plane. Note that as the origin for 3D coordinates is the isocenter, the 

origin in the detector plane is the center of the image, i.e. the isocenter projected on the 

detector plane. 

 

 
Figure 4: CBCT geometry for calculating ROI  

Image modified from [30] 

Image Filtering 

The following figure shows one frame of the original MVCBCT projection image 

in the region around the ROI in one frame.  
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Figure 5: Region near ROI (green rectangle) in a projection frame displayed in JED 

It can be observed that the CNR of MVCBCT is relatively low compared to that 

of traditional CT images. An approximate contour of the diaphragm can be seen by the 

eye, but the edge is blurred. There is no distinct contrast between bright lung area and the 

dark area below. And the noise and other interfering objects in the image makes 

diaphragm tracking more difficult. Image preprocessing techniques are required to 

enhance the diaphragm contour while reducing noise and other interference. The 

selection of image filters depends on the requirement of applications. The balance 

between the quality of filtering and the running time is always a matter of concern. 

Convolution kernels such as average filters or Gaussian filters [38] are widely applied in 

image processing applications with low computation and good noise repression 

characteristics. However the structure of interest such as an edge is also blurred. 

Statistical filters such as Median smoothing preserves edges [17], but the sorting process 

takes much time. Nonlinear filters such as anisotropic diffusion and curvature flow are 

also edge-preserving. However, these filters are more computationally expensive [27]. 

Generally, the more features of interest a filter can preserve, the more time it will 

consume.  In this section, Gaussian and anisotropic diffusion filters implemented in JED 

will be described and compared. Then the technique for enhancing the diaphragm contour 

used in JED will be discussed. 
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A Gaussian filter has a Gaussian function as its filter window. For 2D images, it 

has a kernel with the following mathematical expression: 

  

2 2 2 2

2 2 22 2 2
2 2

1 1
( , )

2 2

x y x y

g x y e e eσ σ σ

πσ πσ

+
− − −

= = ⋅                                   (2.6) 

 

Equation 2.6 also shows that a 2D Gaussian filter can be decomposed into the 

product of two 1D Gaussian filters. This property enables us to decompose the 2D 

convolution into two 1D convolutions, which will save much computation time. For 

example, assume that the size of the Gaussian filter is N N× . For each pixel, the 2D 

convolution involves N N×  multiplications and 1N N× −  additions. With the 

decomposition, each 1D convolution only requires N  multiplications and 1N −  

additions. The sum is 2N  multiplications and 2 2N −  additions.  

The convolution of Gaussian filters can be replaced by multiplication in the 

frequency domain using Fast Fourier Transform (FFT) and its inverse. However, FFT 

will be significantly faster than the convolution only when N  is sufficiently large.  

Anisotropic diffusion filters encourage intra-region smoothing while inhibiting 

inter-region smoothing. It uses an evaluation function with locally adaptive diffusion 

strengths to decide whether an edge should be smoothed or enhanced. It has the 

mathematical expression: 

 

( , ) ( ( , ) ( , ))I x t c x t I x t
t

∂
= ∇ ∇

∂
                                         (2.7) 

  

Where ( , )I x t  is the intensity of a MVCBCT projection image, x  refers to the 

image coordinate ( , )R z , t  refers to the iteration step and ( , )c x t is the diffusion 

evaluation function which monotonically decreases with the image gradient magnitude. 
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From this equation we can observe that the anisotropic diffusion uses an iterative scheme 

that calculates an update to the pixel intensity each time. The evaluation equation is: 

 

( , ) ( ( , ) )c x t f I x t= ∇                                                (2.8) 

  

It allows for locally adaptive diffusion strengths. Many monotonically decreasing 

continuous functions suffice. The one applied in JED is: 

 

2( , )
( , ) exp( ( ) )

I x t
c x t

K

∇
= −                                         (2.9) 

  

Where K  is a diffusion constant and it decides the behavior of the filter. It should 

be chosen carefully to correspond to gradient magnitudes produced by noise and less than 

the gradient magnitude of the edges. The function is plotted as follows: 
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Figure 6: Plot of diffusion evaluation function of anisotropic diffusion applied in JED 
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If we combine both ( , )c x t  and ( , )I x t∇ , we can define a flow function as: 

   

( , ) ( , ) ( , )x t c x t I x tΦ = ∇                                                (2.10) 

 

Then we can rewrite the equation of anisotropic diffusion as: 

  

( , ) ( ( , ))I x t x t
t

∂
= ∇ Φ

∂
                                               (2.11) 

 

The flow function is plotted as a function of the gradient as follows: 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Gradient
 

 
Figure 7: The flow function of the anisotropic diffusion filter applied in JED 

It can be observed that the flow increases with the gradient strength to the point 

where I K∇ ≈ , then decreases to zero. This behavior implies that the diffusion process 

will increase the intensity of pixels with I K∇ <  as the derivative of the flow function is 
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positive. The intensity will be reduced for the pixels with I K∇ > as the derivative of the 

flow function is negative. Noise will be removed gradually as the intensity of pixels is 

updated iteratively. Typically 5 to 20 iterations are needed to evolve the raw projection 

image into a smoothed and enhanced one [27]. The result of the filtered image after the 

Gaussian filter and the anisotropic diffusion filter is shown in the following figures.  

 

 
Figure 8: Original 400×200 region around ROI in a MVCBCT projection frame (Patient 
CBRT0003, frame 2) 

 

 
Figure 9: The region filtered by a 11×11 Gaussian smoothing filter. 5.0σ =  
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Figure 10: The region filtered by an anisotropic diffusion filter after 20 iterations. 15K = .  

After filtering, the edge structure of the diaphragm is easier to identify using an 

edge extractor. The edge extraction technique applied in JED considers both the gradient 

amplitude and the gradient direction. A cost value is assigned for each pixel based on the 

gradient amplitude and direction, representing the probability of this pixel to be the 

diaphragm contour. First, the larger the gradient amplitude is, the more likely that this 

pixel is on an edge. Second, the closer the gradient direction is to the anticipated value, 

the more likely that this edge is a diaphragm contour. The cost function for each pixel can 

be expressed as: 

 

/
( , ) ( , ) (arctan( ), )

/

I y
g x y I x y F x

I x

∂ ∂
= ∇ ⋅

∂ ∂
                                   (2.12) 

 

Where ( , )g x y  is the cost value for pixel ( , )x y . In the following paragraphs, the 

expression( , )x y  will be used instead of ( , )R z  (image detector coordinates) for clarity. 

( , )I x y  is the intensity for ( , )x y  and F  is a function of the gradient direction angle and 

horizontal position. It returns a difference angle in radians between the gradient direction 

and an ideal direction at this horizontal position. The ideal direction is derived from the 



www.manaraa.com

 

 

22

mean shape of a set of training samples of diaphragm contours. The size of the cost 

function region (CFR) is set at 400 200×  typically. The calculation of the ideal direction 

and the illustration of training shapes will be given in the next section. 

 

 
Figure 11: Cost image after Gaussian filter and edge extraction, CFR 400 200×  

Shape Analysis 

With image filters and edge extraction techniques, the diaphragm contour can be 

well detected for high CNR frames. However, there is noise and interference that will 

make edge tracking process lost for these occasions. Prior shape information will provide 

additional knowledge that helps confine diaphragm tracking to the anticipated regions 

and restricts the wrong cases. The training data is generated from diaphragm shapes in 8 

different patients. 5 frames which well represented the general pattern of the diaphragm 

are selected for each patient. Each shape contains 50 points equally distributed on the 

diaphragm contour, which are identified by a human on the JED platform. Each point in 

one shape corresponds to points in other shapes which have the same position on the 

diaphragm. The set of training shapes are shown as follows: 
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Figure 12: Uniformly scaled and aligned training shapes of diaphragm contours (the 
coordinates are aligned and inverted here compared to the pixel coordinate system) 

And the mean shape of the training samples is also shown: 
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Figure 13: Uniformly scaled and aligned mean shape of training samples 
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The ideal direction for each point in the mean shape is calculated as the normal of 

this point, using the coordinates of two adjacent points. For a point ( , )i ix y , the normal 

can be calculated as: 

 

1 1

1 1

( ) i i
ideal i

i i

x x
x

y y
α + −

+ −

−
= −

−
                                                   (2.13) 

 

Note that after we get the training shape data, the scale and rotation angle of these 

shapes are not the same. In order to analyze the shape information, it is necessary to align 

and uniformly scale these shapes. The most common metric that measures the error of 

aligned shapes is the sum of distances: 

  

2

iD x x= −∑                                                            (2.14) 

 

Where x  is the mean shape of the training data and  ix  is one certain shape. For 

shapes in 2D space, there are four parameters to be calculated to minimize the sum of the 

distances: the scale factor s , the rotation angle θ , and the translation factor tranx  and 

trany . The alignment follows the equation: 

 

cos sin

sin cos
tran

tran

xx x
T s

y y y

θ θ

θ θ

     
= +     −     

                                (2.15) 

 

There are several methods for calculating these parameters: calculating rotation 

angle after uniform scaling, calculating rotation angle and uniformed scale 

simultaneously, or projecting shape vectors into tangent space to avoid non-linearity [8]. 

The first method is applied in this work. In this method each shape is translated to the 
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position where its centroid is at the origin. They are uniformly scaled to have the same 

norm. The rotation angle is calculated using a least-square method with singular value 

decomposition (SVD) [8].  

The calculation of alignment uses an iterative algorithm illustrated on Page 14 in 

Cootes’ book [7]. For each iteration, the mean shape is calculated. A reference shape is 

arbitrarily selected and the alignment is calculated for all the other shapes. The mean 

shape is updated in the next iteration. Typically, 2 to 3 iterations are enough to align the 

shapes into uniform positions. The aligned shapes of training samples are in figure 12.  

As one diaphragm contour has 50 2D points, it can be considered as a point in nR  

where 100n = . As the centroid, scale and the rotation angle of the shape is fixed, the 

shape vector has 96 free parameters. We wish to find the general pattern inside the 

training shapes. However, it is hard to identify the pattern in high dimensions. Principle 

Component Analysis (PCA) is a statistical technique that can reduce the number of 

dimensions of data without much loss of information, while highlighting the similarity 

and differences. Each shape can be expressed as: 

 

1 1 2 2 3 3 50 50( , , , , , ,... , )Ts x y x y x y x y=                                         (2.16) 

 

PCA is accomplished by calculating the eigenvectors and eigenvalues of the 

covariance matrix of the training samples. The covariance matrix is calculated from all 

the 40 training shapes. It has the expression as: 

 

1 2 3 40 1 2 3 40

1
cov ( , , ,..., )( , , ,..., )

1
Ts s s s s s s s

n
=

−
                               (2.17) 

 



www.manaraa.com

 

 

26

Note that all the shape vectors are aligned. In our case, cov is a 100×100 

symmetric matrix. As the covariance matrix is semi positive definite, all the eigenvalues 

of cov are non-negative. In fact, each eigenvector of cov is one component of the data 

set. It represents a direction in 100 Dimension space. The eigenvalue represents the 

variance of data along the direction determined by the eigenvector. The eigenvector with 

the highest eigenvalue is the principle component. It is the most significant relationship 

between the data dimensions.  

Now if the eigenvalues are sorted from highest to lowest, the components in order 

of significance are given. The process of reducing dimensions is to ignore the 

components of lesser significance, while keeping the more important ones. If the 

eigenvalues of ignored eigenvectors are small, the information is not lost too much. In 

our case, a few eigenvalues make up most of the variance of the data set.  
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Figure 14: 100 eigenvalues of covariance matrix of training shapes. The horizontal axis is 
the number of eigenvalues sorted from lowest to highest, the vertical axis is the ratio of 
this eigenvalue to the sum of 100 eigenvalues. 
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In this figure, the largest eigenvalue takes up 78.9% of the sum of all the 

eigenvalues, with the second 6.64%, the third 3.49%, and the fourth 2.62%. In fact, the 

largest 12 eigenvalues take up 98.2% of the sum. We can ignore the other 88 components 

and just use these 12 eigenvectors to represent the data set without much loss of 

information. A linear model with 12 free parameters is established as: 

 

x x b= +Φ                                                                    (2.18) 

 

Where x  is the shape generated by this linear model, which is a vector in 100 

dimensional space. x  is the mean shape. Φ  is a matrix composed of the eigenvectors we 

select with the expression 1 2 3 12( , , ,..., )v v v vΦ =  and b  is the parameter matrix for the 12 

directions determined by 12 eigenvectors with 1 2 3 12( , , ,..., )Tb b b b b= . This linear model 

cannot represent all the shapes in 100 dimensions. For an arbitrary shape, this linear 

model will find the shape closest to it by minimizing an error metric such as least squares. 

The parameters b  will be calculated based on this metric for minimization. The 

advantage of prior shape information is that we can restrict parameters of b  to confine 

the contour to be tracked in a reasonable shape. 3 iib λ<  is applied in JED, where iλ  is 

the eigenvalue corresponding to this component. 

Based on the established linear model of equation 2.18, ASM can be applied in 

diaphragm tracking. Given an initial instance of a diaphragm shape, ASM updates and 

confines the shape iteratively until convergence. During each iteration, for each point in a 

shape, ASM looks along a profile normal to the shape boundary through this point. 2 1l +  

pixels along the normal around this point are scanned in order to find the pixel with the 

minimum correlation (figure 15). For each pixel along the profile normal, the correlation 

is calculated as a Mahalanobis distance using the following equation:  
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( ) ( ) ( )T
s s g sf g g g S g g= − −                                                (2.19) 

 

 
Figure 15: At each shape point, search along a profile normal to boundary 

where sg  is a vector containing 2 1k +  elements. It represents the derivative of intensity 

in adjacent pixels along the normal direction. It scans for 2 1k +  adjacent pixels along the 

normal direction. g  is the average derivative of intensities near this point in training 

samples and gS  is the covariance matrix of g  of different shape points. The matching 

procedure is illustrated in the following figure: 

  

 
Figure 16: Searching along the profile to find the best fit,  2k =  and 6l =  

Image from Page 39 of [7], by permission from the author 
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Optimal Graph Search 

Like ASM, many methods in video tracking use iterative schemes to find a local 

optimal solution. If the object function to be minimized is convex, the local optimum is 

then the global optimum. However, this is not always the case in real applications. 

Optimal graph search methods aim to find a surface in a 3D graph with a globally 

maximized sum of weights of nodes. As the projection data form a sequence of 2D 

images and can be considered as a video, we can use all 2D frames to construct a 3D 

graph where each vertex corresponds to one pixel in a certain frame with a weight 

calculated by equation 2.12. The mathematical expression of optimal graph search and 

the theoretic framework behind it can be seen in Wu and Chen’s paper as the optimal V-

weight net surface problem with smoothness constraints [36]. For completeness we will 

describe the concept as the following. 

Given a 3D multi-column graph ( , )G V E= where V  represents the set of vertices 

and E  represents the set of edges of this graph, each vertex v V∈  having a real-valued 

weight ( )w v . Find a net N  in G such that the sum of the weight ( )( ) ( )v V NN w vα ∈=∑  is 

minimized. The net N  satisfies a smoothness constraint. For every two nodes 

1 1 1 1 2 2 2 2( , , ), ( , , )v x y z v x y z N∈  in adjacent columns, i.e. 1 2 1 2 1x x y y− + − =  where 

1 2 1 2, , ,x x y y  are integers which represent the position of the column in the base graph and 

z  is the coordinate of a node in a column identified by coordinates ( , )x y , the difference 

of the position of the two nodes in each column should not be larger than a regulated 

constraint: 

 

1 2 1 2

1 2 1 2

, 1

, 1

z z x if x x

z z y if y y

− ≤ ∆ − =

− ≤ ∆ − =
                                                (2.20) 
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where x∆  and y∆  are smoothness constraints along thex  and y  directions. The problem 

of single optimal surface detection is identical to the maximum closed set problem [15]. 

The maximum closed set problem is to find a closed subset of nodes 'V V∈  such that the 

sum of weights for this subset is maximized. The single optimal surface detection 

problem can be easily transformed into a maximum closed set problem without changing 

the graph. With ( , , )g x y z  representing the original cost of the nodes, a new cost 

( , , )c x y z  for the maximum closed set can be calculated as: 

 

( , , ), 0
( , , )

( , , ) ( , , 1),

g x y z z
c x y z

g x y z g x y z otherwise

=
= 

− −
                          (2.21) 

 

The maximum closed problem can be solved by a minimum cut algorithm on a 

related ,s t graph [13]. This graph is denoted by stG  and it is derived by adding a source 

node s  and a sink node t  on the original graph G . All nodes with positive weight are 

connected from s  with a capacity of the node weight in G , while all nodes with negative 

weights are connected to t  with a capacity of the absolute value of the node weight in G . 

The arc capacity in the original graph G  is set to infinity. It is proved that the maximum 

closed set S  in G  corresponds to the set S in the minimum cut of stG  [13].  

There are many algorithms for the minimum cut problem. The running time of 

traditional algorithms such as the Ford-Fulkerson algorithm is ( )O E f⋅  where E  is the 

number of edges in stG  and f  is the maximum flow. The general push-relabel algorithm 

is 2( )O V E , where V  is the number of nodes in stG . Boykov and Kolmogorov proposed a 

method that is, at worst, 2( )O V EC  where C  is the number of minimum cuts, but much faster 

in real applications [39]. Hochbaum proposed a pseudo-flow algorithm with complexities 

( log )O VE V  [14]. In JED a former library of Boykov and Kolmogorov’s algorithm is 

applied. The diaphragm contour in 200 frames can be detected simultaneously. The 

400 200×  CFR is resampled to a 30 30×  region. The smoothness constraint of pixels in 
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this resampled image is 1 for the x  direction and 2 (equal to 13.3 pixels for original CFR 

pixels) for the t  direction. ( , , )x y t  is used to represent coordinates instead of ( , , )x y z  to 

indicate that the 3D graph is an image sequence. Compared to the average velocity 

4.44 /pixel frame  of the lung’s motion, this intra-frame smoothness constraint is more 

appropriate considering velocity variations.  

Dynamic Hough Transform 

Optimal graph search establishes the intra-frame relationship by smoothness 

constraints. However, it does not account for the global shape pattern of the diaphragm 

contour. We would like to find a method that combines the prior shape knowledge and 

the intra-frame smoothness constraint. The previous methods on parametric models in 

video tracking are mainly focused on motion estimation, rather than shape matching [19, 

22, 23]. A method developed by Baker and Barnes fits a parametric model onto a 3D 

Cochlea image [3], but no intra-frame constraint is applied in the registration process. 

Another method estimates the object motion by a 3D Hough transform of image motion, 

but this method can only detect constant motion [40]. A dynamic Hough transform was 

proposed that can detect arbitrary motion by detecting a trajectory in a Hough image [41, 

42]. However this method assumes the shape of object is invariant throughout the frames. 

In this section a method based on the dynamic Hough transform that can detect a 

deformable object in arbitrary motion through an image sequence is described.  

This method assumes that the diaphragm can be represented by a parabola with an 

axis parallel to the SI direction. The parabola can be described by a curvature parameter 

a  and a vertex position 0 0( , )x y . For each shape point iv V∈  with horizontal coordinate 

ix , where V  is the point set of the parabola, the coordinates of iv  can be represented as: 
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2
0 0( ) [ , ( ) ]T

i i i iv x x a x x y= − +                                             (2.22) 

 

The goal is to choose appropriate parameters of 0 0, ,a x y  to match this parabola 

template. For a given set of parameters of 0 0, ,a x y , the metric function should be able to 

represent the propensity of this parabola to be the diaphragm contour. The matching 

metric function is designed to be the sum of the cost of all the pixels on the parabola: 

 

0 0
1

( , , ) ( ( ))
w

i
x

M a x y g v x
=

=∑                                             (2.23) 

 

Where w  is the CFR width. For each frame, a reasonable range for each 

parameter of the parabola can be given: its vertex should be within the ROI, while the 

curvature parameter satisfies 0.0005 0.003a≤ ≤  based on experience. If the matching 

metric for every combination of parameters 0 0, ,a x y  within the range is calculated, a 3D 

Hough image is generated such that every node in this graph 0 0( , , )a x y  represents a 

parabola with a weight of metric 0 0( , , )M a x y . If 200 Hough images are stacked together 

from frame 1 to frame 200, a 4D metric graph is constructed. Each node is represented by 

0 0( , , , )a x y t  and has a weight 0 0( , , , )M a x y t , where t  is the frame index.  

 

 
Figure 17: 3D Hough image sequence, each voxel has four coordinates 0 0( , , , )a x y t  
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With the 200 Hough images, the problem of diaphragm detection in 200 frames 

simultaneously becomes the problem of finding a voxel for each Hough image. We wish 

to find voxels with as large a metric value as possible. From ideas in optimal graph 

search, we can also incorporate intra-frame constraints. As there is only a small 

deformation of diaphragm contours between adjacent frames, the parameters 0 0( , , )a x y  

of the diaphragm parabola does not change too much. We can restrict the difference of 

parameters between adjacent frames to a reasonable limit. We can consider this problem 

as finding a continuous path traversing through a 4D graph composed of a 3D Hough 

image sequence. This path intersects with each 3D Hough image once with a maximum 

sum of weights. “Continuity” requirements of this path are satisfied by smoothness 

constraints. The mathematical statement is: 

 

200

0 0
1

max ( , , , )t t t
t

M a x y t
=
∑ , subject to 

1

0 0( 1) 0

0 0( 1) 0

t t

t t

t t

a a a

x x x

y y y

−

−

−

 − ≤ ∆


− ≤ ∆


− ≤ ∆

                   (2.24) 

 

The method for calculation of the maximized fit is dynamic programming with 

path detection. Dynamic programming solves problems by decomposing them into 

overlapping sub-problems iteratively. It is much faster and uses less memory than naive 

methods such as exhaustive search. The 2D case for dynamic programming is well 

explained in Sonka’s book for applications of 2D image edge detection [33]. In this work 

the dynamic programming scheme is extended for path detection in a 3D Hough image 

sequence. The process of dynamic programming in a 3D image sequence is described by 

the following algorithm: 

Given 0 0( , , , )M a x y t : 

initiate a cumulative matrix 0 0( , , , )CM a x y t , 



www.manaraa.com

 

 

34

initiate three back tracking matrices 0 0( , , , )A a x y t , 0 0( , , , )X a x y t , 0 0( , , , )Y a x y t , 

initiate three arrays (200), (200), (200)ar xr yr  for recording the result, 

0 0 0 0( , , ,1) ( , , ,1)CM a x y M a x y=  for every 0.0005 0.003a≤ ≤ , 0 0( , )x y  within ROI 

For t=2 to 200 

0 0 0 0 0 0 0 0', ', ' arg max( ( ', ', ', 1) ( , , , ))a x y CM a a x x y y t M a x y t∆ ∆ ∆ = + ∆ + ∆ + ∆ − +  

0 0 0 0. . ' , ' , 's t a a x x y y∆ ≤ ∆ ∆ ≤ ∆ ∆ ≤ ∆  

0 0 0 0 0 0 0 0( , , , ) ( ', ', ', 1) ( , , , )CM a x y t CM a a x x y y t M a x y t= + ∆ + ∆ + ∆ − +  

0 0( , , , ) 'A a x y t a= ∆  

0 0 0( , , , ) 'X a x y t x= ∆  

0 0 0( , , , ) 'Y a x y t y= ∆  

end (for). 

(200), (200), (200) arg max( ( (200), (200), (200),200))ar xr yr CM ar xr yr=  

For t=199 to 1 

          ( ) ( 1) ( ( 1), ( 1), ( 1), 1)ar t ar t A ar t xr t yr t t= + − + + + +  

          ( ) ( 1) ( ( 1), ( 1), ( 1), 1)xr t xr t X ar t xr t yr t t= + − + + + +  

           ( ) ( 1) ( ( 1), ( 1), ( 1), 1)yr t yr t Y ar t xr t yr t t= + − + + + +  

end (for). 

The algorithm calculates the path with the maximum weight from the first Hough 

image to every voxel. The path for the voxel in the first Hough image is simply itself. For 

the other voxel, it looks around for each possible predecessor in the previous Hough 

image and chooses the voxel with the maximized weight. In this way it maintains a 4D 

array 0 0( , , , )CM a x y t  to record the cumulative weights. When the algorithm searches to 

the last Hough image, the path with the largest sum of weights can be easily found as the 

largest cumulative weight voxel in the last Hough image. The predecessor of this voxel 

along the path can easily be traced back to the first frame.  
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The algorithm scans each voxel and each of its predecessors one time. the total 

running time for this algorithm is 0 0 0 0( ( ) ( ) ( ) )O r a r x r y a x y∆ ∆ ∆  where ( )r ⋅  means the 

number of possible values of the variable inside. For a , the value is sampled with a 

parameter grid spacing of 0.0003. 2 for 0y  and 5 for 0x . The smoothness constraint 

between adjacent frames is set at 15 /pixel frame , which is much larger than the mean 

speed of diaphragm motion (4.44 /pixel frame ) and close to the value used in the 

optimal graph search (13.3 /pixel frame ). 
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CHAPTER THREE                                                                         

RESULT AND DISCUSSION 

Validation of Different Methods 

In this work, different diaphragm tracking methods are tested, including boundary 

tracing as dynamic programming in 2D image(2D DP), ASM, optimal graph search 

(OPT), optimal graph search with edge weight on warped ROI (OPT-VCE) and dynamic 

Hough transform (DHT). To evaluate the accuracy of these tracking methods, we 

compared the diaphragm apex identified by a human expert against the diaphragm apex 

back projected into 3D room coordinates along the cranio-caudal axis. The error is 

calculated as the distance between the expert identified point and the algorithm generated 

point along the cranio-caudal axis. Only the cranio-caudal axis was tested because of the 

difficulty for the human expert to identify the horizontal coordinate of the diaphragm 

apex in views where the diaphragm is flat. 

To get the position of the diaphragm apex in 3D coordinates, we have to first 

identify the diaphragm apex in 2D image planes. For DHT, the diaphragm apex can be 

easily derived as the parabola vertex 0 0( , )x y . For other methods, 200 apex points are 

found simultaneously by searching for the maximum of the sum of heights of all the 

possible positions in 200 frames which satisfies the smoothness constraint. Dynamic 

programming is used in this searching process.  

The second step is to estimate the position of the diaphragm apex in 3D. Unlike 

the ROI computation where the diaphragm apex at full exhale and full inhale can be 

determined by two user-identified frames each, the diaphragm apex in 3D has to be 

estimated from one frame. An interpolation method is used to calculate the ( , )d dx y  

position of the diaphragm apex for an arbitrary frame, using the equation below: 
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                                     (3.1) 

 

Where the subscripts 1 and 2 represent the coordinates of full exhale and full 

inhale points, respectively. Since there is little motion in x  and y , the error of using this 

interpolation method is at most 1% [30]. With ( , )d dx y , dz  can be determined by 

calculating the similar triangle between the minified view and the image plane: 

 

sin cosf d d

f
d p

y x y

SAD y
z z

SAD

θ θ= − +

−
=

                                                 (3.2) 

 

The meaning of all the variables in 3.1 and 3.2 is the same for those in chapter 2. 

In this work the five methods are experimented on 21 patient data sets and the mean 

squared error for each patient image containing 200 frames are determined as in the 

following diagram: 
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Figure 18: Mean squared error of 5 methods on 21 patient images 
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And the following diagram and table shows the mean and standard deviation of 

the error: 
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Figure 19: Mean and standard deviation of the error for 21 patient images 

2D DP ASM OPT OPT-VCE DHT 

2.680±1.963 5.589±2.170 2.986±1.299 2.716±1.156 1.707±1.117 

 
Table 1: Mean and standard deviation of the error for 21 patient images 

It can be seen that DHT performs better than the other techniques with a smaller 

mean and variance of error. 2D DP, OPT and OPT-VCE are less accurate than DHT but 

the error is stable. The error of ASM is relatively large as it loses track of the diaphragm 

in many frames. Some examples of the diaphragm contours detected by these methods 

are illustrated here: 
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Figure 20: Diaphragm detected by DHT, a high contrast frame (left) and a low contrast 
frame with stripe artifact (right) 

       

 
Figure 21: Diaphragm detected by DHT, a frame with confounding objects of heart and 
table (left) and a frame with overlapping lungs (right) 

     

 
Figure 22: Diaphragm detected by 2D-DP:, a frame with interference of a bright area on 
the top (left) and a frame with overlapping lungs (right) 
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Figure 23: Diaphragm detected by ASM, a clear frame (left) and a frame with 
overlapping lungs (right) 

     

 
Figure 24: Diaphragm detected by OPT, a frame with interference of a bright area (left) 
and a frame with overlapping lungs (right) 

 

     

 
Figure 25: Diaphragm detected by OPT-VCE, a frame with interference of a bright area 
(left) and a frame with overlapping lungs (right) 
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It can be seen that an edge close to the diaphragm confuses the algorithms as it 

could be considered as the true diaphragm contour. Only DHT is not sensitive to local 

interference as it requires the parabola to be found, while the other algorithms can choose 

arbitrary paths for the contours. For the DHT algorithm, the use of the global minimum 

helps to distinguish between similar features. The parameter space for 0y  was put on a 

coarse grid at 2 pixel intervals, and at isocenter a pixel is about 0.27 mm, a systematic 

error of about 0.3 mm is present (this can be observed near the full exhale points at the 

bottom of the graph in figure 26).  
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Figure 26: The vertical coordinate in the image plane plotted against frame number for 
the expert (pink line) and DHT algorithm (blue points). 

Running Time 

As the algorithms developed in this work will be implemented in clinical 

application, the running time is an important matter of concern. The diaphragm detection 

for 200 frames should be accomplished in less than one minute. Generally, the cost of 
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less time is less accuracy. However, this is not always the case and with appropriate 

algorithm design and implementation, high accuracy and a reasonable running time can 

be achieved simultaneously. This section explores the running time in the methods 

applied in this work. The running time tested in this work is on a laptop with Intel dual-

core T2300 1.66GHz CPU and 4G RAM in Microsoft Visual Basic 2008 debug mode 

with Windows XP.  

The Gaussian filter is faster than anisotropic diffusion. Filtering a single frame 

takes about 2.90s for anisotropic diffusion with 20 iterations, while only 0.03s for an 

11×11 Gaussian filter. The sum of time used in filtering 200 frames will be up to 10 

minutes for anisotropic diffusion, and only 6s for the Gaussian filter. Considering the 

clinical requirement, the anisotropic diffusion filter is inappropriate. The Gaussian filter 

is applied in the preprocessing procedure.  

The running time for computing the 400×200 CFR is about 0.1~0.15s for each 

frame. This filtering process is required by all the methods. The running time on 200 

frames is about 20s, which should be taken into account.  

The running time for the optimal graph search is about 7.5s for a 3D graph of 

30 30 200× ×  nodes using Boykov and Kolmogorov’s method [39]. Taking into account 

20s for filtering, the total time should be 30s, while For ASM and 2D DP, the times are 

48s and 42s, respectively. 

For DHT, the running time of calculating the weights of nodes in the 3D graph of 

one frame is about 0.05s. The time for calculating 200 frames of the CFR and 3D graph 

takes a major part of the running time which takes 33s. The time for finding the 

maximum path is 19s. The total time required by DHT is 52s, which satisfies the clinical 

requirement, though it is slower than the other methods.  

Note that the speed will be faster in a clinical application than the one tested on 

the laptop. One reason is the higher performance of the desktop computer used in the 

clinic. The second is that JED will be executed in application mode rather than debug 
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mode, where the development environment performs other tasks. For example, the 

analysis of a CBCT by DHT can be done in about 38 seconds on a 2.66 GHz Intel quad-

core 2 CPU, compared to 52s for the laptop. 

Discussion and Future Work 

DHT is the most accurate algorithm among the five methods tested in this work. 

However, several issues should be further considered to implement DHT in a real clinical 

application.  

First, there is some human subjectivity for the expert identification in the cranio-

caudal direction. The error between the algorithm and the human has two components: 

One is the systematic error generated by the algorithm, and one is caused by the variation 

of the human’s subjectivity. In order to estimate this variation, a true gold standard needs 

to be established. The diaphragm apex should be identified by more human experts in 

order to get the difference between humans. By getting this variance, we can know more 

about to what extent the result achieved close to human identification.  

For MVCBCT images, the motion speed is slower at full inhale and full exhale 

phases, while faster during the intermediate phases. A special case is that there is a large 

displacement between the first two frames because of the slower initial gantry rotation 

speed. However, the smoothness constraints applied in optimal graph search and DHT are 

all constant. These constraints are appropriate for the fast motion speed, but unnecessary 

for the slow one. An adaptive smoothness constraint is considered. In this scheme the 

algorithm may go through the 200 frames in two passes. The first pass is to get the phase 

information of the patient’s respiration. Then an adaptive smoothness constraint can be 

determined by respiratory phase. The constraints can be set smaller for full inhale and full 
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exhale phases, and larger for the intermediate phases. Then the algorithm will run a 

second time to locate the diaphragm accurately based on these constraints.  

As a matter of fact, the parabola model can also be considered as a shape vector 

1 1 2 2 3 3 50 50( , , , , , ,... , )Tparabolas x y x y x y x y= in 100 dimensional space. But the parabola model 

cannot be represented by linear equation 2.18 because iy  is dependent on ix . So instead 

of a line, the parabola model represents a surface in 100 dimensional space. It is hard to 

calculate the variance of training data to evaluate the performance of parabola model. 

From the observation of the tracking result, the parabola model matches most diaphragm 

contours well. But there are few cases where the shape of diaphragm is deformed due to 

pathological changes. More parameters should be considered to represent more various 

shapes of diaphragms for these cases.  

We also notice that ASM performs poorly in this application. It loses track in 

many frames where the initial shape is too far away from the expected structure and the 

shape is trapped in a local extremum. An even worse case is that the diaphragm contour 

converges into a chunk, as each shape point searches for pixels along its normal direction. 

A multi resolution technique may resolve these problems. Using an image pyramid,  the 

shape is first detected in a coarse image, then refined in a series of finer resolution images. 

This technique leads to a faster algorithm and is less likely to get stuck on the wrong 

image structure [7]. It can also be applied to algorithms of optimal graph search and 

dynamic programming. 
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CHAPTER FOUR                                                                         

CONCLUSION 

We have developed several algorithms for diaphragm detection in 2D views of 

cone-beam computed tomography (CBCT) raw data. These algorithms are tested on 21 

Siemens megavoltage CBCT scans of lungs and the result is compared against the 

diaphragm apex identified by human experts. Among these algorithms dynamic Hough 

transform is sufficiently quick and accurate for motion determination prior to radiation 

therapy. The diaphragm was successfully detected in all 21 data sets, even for views with 

poor image quality and confounding objects. Each CBCT scan analysis (200 frames) took 

about 38 seconds on a 2.66 GHz Intel quad-core 2 CPU. The average cranio-caudal 

position error was 1.707 ± 1.117 mm. Other directions were not assessed due to 

uncertainties in expert identification. 

 



www.manaraa.com

 

 

46

REFERENCES 

1. Ahn, S., Yi, B., Suh, Y., Kim, J., Lee, S., Shin, S., Shin, S. & Choi, E. A 
feasibility study on the prediction of tumour location in the lung from skin motion. 
The British Journal of Radiology, 77(919): 588, 2004. 

2. Andrew, V. G., & Robert, E. T. A new approach to the maximum-flow problem. 
Journal of the Association for Computing Machinery, 35(4), 1988. 

3. Baker, G., & Barnes, N. Model-image registration of parametric shape models: 
Fitting a shell to the cochlea. IJ - MICCAI Open-Source Workshop, 2005 

4. Barron, J. L., Fleet, D. J., Burkitt, T. A., & Beauchemin, S. S. Performance of 
optical flow techniques. IJCV 12(1): 43-77, 1992 

5. Beuchemin, S. S., & Barron, J. L. 1. The computation of optical flow. ACM 
Computing Surveys, 27(3): 433, 1995. 

6. Boyer, E. Object models from contour sequences. Proc. 4th European Conference 
on Computer Vision (ECCV), 2:109-118, 1996. 

7. Cootes, T., Taylor, C., Lanitis, A., Active Shape Models: Evaluation of a Multi-
Resolution Method for Improving Image Search, in Proc. British Machine Vision 
Conference, 327-336, 1994. 

8. Cootes, T. F., Taylor, C. J., Graham, J., & Cooper, D. H. Training models of 
shape from sets of examples.Proc. British Machine Vision Conference 1991, 9-18. 
Published by Springer-Verlag, 1992 

9. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. The ford-fulkerson 
method. Introduction to algorithms, 651. MIT Press and McGraw-Hill, 2001. 

10. Davi, G., Alok, G., Luiz, A. C., & John, V. Dynamic programming for detecting, 
tracking, and matching deformable contours. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 17(3): 294-302, 1995. 

11. Frank, T., Nagel, H., Haag, M. 1., & Kollnig, H. 1. Tracking of occluded vehicles 
in traffic scenes. Proc. 4th European Conference on Computer Visio (ECCV), 2: 
485-494, 1996. 

12. Harrell, R. C., Slaughter, D. C. 1., & Adsit, P. D. 1. A fruit-tracking system for 
robotic harvesting. Machine Vision and Applications, 2(2): 69, 1989. 

13. Hochbaum, D. A new-old algorithm for minimum-cut and maximum-flow in 
closure graphs. Networks, 37(4): 171, 2001. 

14. Hochbaum, D. The pseudoflow algorithm: A new algorithm for the maximum-
flow problem. Operations Research, 56(4): 992, 2008. 

15. Li, K., Wu, X., Chen, D., Sonka, M. Optimal surface segmentation in volumetric 
images-A graph-theoretic approach. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 28(1): 119-134, 2006. 



www.manaraa.com

 

 

47

16. Kass, M., Witkin, A., & Terzopoulos, D. Snakes: active contour models. 
International Journal of Computer Vision, 1(4): 321-331, 1987 

17. Keatley, E., Mageras, G., & Ling, C. (2000). Computer automated diaphragm 
motion quantification in a fluoroscopic movie. Engineering inMedicine and 
Biology Society, 3: 1749-1751. Proc. 22nd annual international conference of the 
IEEE, 2000. 

18. Klim, S., Mortensen, S., Bodvarsson, B., Hyldstrup, L., & Thodberg, H. More 
active shape model. Image and Vision Computing New Zealand, 2003. 

19. Duan, L., Wang, J., Zheng, Y., Xu, C., Tian, Q., Jin, J. & Lu, H. Shot-level 
camera motion estimation based on a parametric model. TRECVID 2005, 
Gaithersburg, Maryland, USA, 2005 

20. Mageras, G. S., Yorke, E., Rosenzweig, K., Braban, L., Keatley, E., Ford, E., 
Leibel, S.A., Ling, C.C. Fluoroscopic evaluation of diaphragmatic motion 
reduction with a respiratory gated radiotherapy system. Journal of Applied 
Clinical Medical Physics, 2(4): 191-200, 2001. 

21. Meyer, J., Richter, A., Baier, K., Wilbert, J., Guckenberger, M., & Flentje, M. 
Tracking moving objects with megavoltage portal imaging: A feasibility study. 
Medical Physics, 33(5): 1275-80, 2006. 

22. Michael, J. B., & Yaser, Y. Tracking and recognizing rigid and non-rigid facial 
motions using local parametric models of image motion. Proc. 5th International 
Conference on Computer Vision (ICCV), 374, 1995 

23. Musse, O., Heitz, F., & Armspach, J. Topology preserving deformable image 
matching using constrained hierarchical parametric models. IEEE Transactions 
on Image Processing, 10(7):1081-1093, 2001 

24. Nagel, H. Displacement vectors derived from second-order intensity variations in 
image sequences. Computer Vision, Graphics, and Image Processing, 21(1): 85-
117, 1983. 

25. Morin, O. The development and role of megavoltage cone beam computed 
tomography in radiation oncology. Ph.D. dissertation, University of California, 
Berkeley, 2007. 

26. Ozhasoglu, C., & Murphy, M. J. (2002). Issues in respiratory motion 
compensation during external-beam radiotherapy. International Journal of 
Radiation Oncology, Biology, Physics, 52(5): 1389-99, 2002.  

27. Reitz, B., Gayou, O., Parda, D. S., & Miften, M. Monitoring tumor motion with 
on-line mega-voltage cone-beam computed tomography imaging in a cine mode. 
Physics in Medicine Biology, 53(4): 823-836, 2008. 

28. Singh, A. (1990). An estimation-theoretic framework for image-flow computation. 
Proc. 3rd International Conference on Computer Vision (ICCV), 168-177, 1990 

29. Siochi, R. Deriving motion from megavoltage localization cone beam computed 
tomography scans, submitted to Physics in Medicine and Biology. 



www.manaraa.com

 

 

48

30. Siochi, R. A projection point tracking method for gated 4DRT validation, MO-E-
M100F-3, 49th AAPM Annual Meeting, Minneapolis, MN, July 22 - July 26, 2007, 
(PowerPoint slides by private communication). 

31. Siochi, R. PI, Verification of 4D radiation therapy, NIH R21 grant proposal 
1R21CA133975-01. Submitted July 31, 2007. 

32. Siochi, R. A projection point tracking method for gated 4DRT validation. Medical 
Physics, 34(6), 2528, 2007. 

 
      33. Sonka, M., Hlavac, V., & Boyle, R. Image processing, analysis, and machine 

vision, 3rd edition, Toronto: Thompson Learning, 2008. 

      34. TF, C., A, H., CJ, T., & J, H. Use of active shape models for locating structures in 
medical images. Image and Vision Computing, 12(6): 355, 1994. 

35. Vedam, S. S., Kini, V. R., Keall, P. J., Ramakrishnan, V., Mostafavi, H., & 
Mohan, R. Quantifying the predictability of diaphragm motion during respiration 
with a noninvasive external marker. Medical Physics, 30(4): 505, 2003 

36. Wu, X., Chen, D. Optimal net surface problems with applications. Automata, 
languages and programming, 775, 2002. 

37. Xu, C., Prince, J. Snakes, shapes, and gradient vector flow. IEEE Transactions on 
Image Processing, 7(3):359, 1998. 

38. Xu, Q., Hamilton, R. J., Schowengerdt, R. A., Alexander, B., & Jiang, S. B. Lung 
tumor tracking in fluoroscopic video based on optical flow. Medical Physics, 
35(12): 5351, 2008. 

39. Boykov, Y. & Kolmogorov, V. An experimental comparison of min-Cut/Max-
flow algorithms for energy minimization in vision. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 26(9): 1124-1137, 2004. 

40. Iida, H., Hwang, J. & Ozawa, S. Extraction of motion from spatio-temporal image 
using the 3-dimensional Hough transform. IEEE Pacific Rim Conference. 1(19-
21): 174-177, 1993. 

41. Lappas, P., Carter, J.N. & Damper, R.I. Object tracking via the dynamic velocity 
Hough transform. IEEE International Conference on Image Processing. 2: 371-
374, 2002.  

42. Lappas, P., Carter, J.N. & Damper, R.I. Robust evidence-based object tracking. 
Pattern Recognition Letters. 23(1-3): 253-260, 2002. 

 

 

        


	Development of a diaphragm tracking algorithm for megavoltage cone beam CT projection data
	Recommended Citation

	Microsoft Word - $ASQ10853_supp_652C069A-38E7-11DE-AA9C-4634F0E6BF1D.doc

