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CHAPTER ONE

INTRODUCTION

Background and M otivation

In radiotherapy, lung tumor localization is of great concern due to unavoidable
respiratory motion. Respiratory gating techniques have been developed overthie ye
increase the radiation dose to the tumor while reducing radiation to the adjactmt heal
tissues. In our clinic, an abdominal belt is used as an external marker to record the
correlation between the phase and location of the tumor during the kilo-voltage (KV)
treatment planning CT scan. During each treatment, the cranio-cauti@rposthe
tumor will be determined by the pressure on a strain gauge placed under an abdomina
belt. Physicians can determine when to turn the beam on or off based on tumor position.

Although various attempts have been made to quantify the correlation between
external abdominal signals and tumor motion [35, 1], it is reported that various
respiratory phase delays occur for external markers for patientghapaired lung
function [20, 26], which makes the external marker not fully reliable. Thedeestare
based on the assumption of direct tumor-diaphragm relationship. If we can dgcurate
locate the position of the diaphragm apex, it will be a more powerful method of
characterizing respiration, since the amplitude of motion can be determimésl, w
external markers such as strain gauges only provide relative phaseaidor{32].

With the recent development of megavoltage cone beam CT (MVCBCT) systems,
accurate daily localization can be derived by registering the recaesti®id MV CT

with the planning KV CT before each treatment. The changes in tumor shape, size and
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position during the course of treatment can be monitored by registerindodailization
3D MVCBCT images with planning KV CT images [25]. Studies on the feasibility of
tracking objects in MV portal images suggested that it is possible to trackatjaphr
motion in MVCBCT raw projection images [21]. In our current clinic, physicians should
identify the position of the diaphragm manually for each projectionemBgs is time
consuming which made it impossible to apply clinically as there isca ttnie limit for
patient localization before treatment. Xu et al. developed an optical flow methadk
lung tumors in fluoroscopic videos [38]. However, a tumor contour in the initial reference
frame is needed to be drawn by a clinician or transferred from digikaibnstructed
radiographs. Keatley et al. developed a diaphragm tracking method using actotegsont
with dynamic programming on fluoroscopic sequences taken from one gantrylafijgle
But the diaphragm contour is only a local energy minima and the process also needs a
contour and several landmarks drawn by humans. In this work, a computer automated
diaphragm tracking algorithm is developed and tested on fluoroscopic sequenges take
with the camera rotating about the patient. The algorithm is guaranteed toefigidthal
optimum with fewer human interactions. The result is proved to be robust and accurate.
The running time satisfies the clinical application.

The sequence of projection images has the same dynamic featuradeas &Ve
can fully utilize the algorithms of video processing to solve our problem. The following
part of this thesis will give a brief review on several important branches af traeking
methods. In chapter 2, a brief introduction of MVCBCT projection image and our
software platform will be introduced. Then | will explain the previous work by Smthi

calculating the region of interest (ROI) of the diaphragm apexg @BCT geometry
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[29]. Then techniques experimented in this work will be described, including image

filters, dynamic programming (DP) with shortest path, principle compareiysis,

active shape model (ASM), and optimal graph search. Dyanmic Hough trangferm, t
method achieving the best result in this work, will be described with emphasisapter

3, results of the different methods will be illustrated and discussed, includimgtbP

shortest path in 2D, ASM, optimal graph search, optimal graph search with edge cost and
dynamic Hough transform. Future work and unresolved problems are also included in

that chapter.

An Overview of tracking methodsin an image sequence

A video is a sequence of images. Each image within this sequence isacalled
frame. Video tracking, sometimes referred to as motion tracking, motiomaéss or
visual tracking in other literature, is an automatic algorithm to lagiatge or multiple
moving objects in an image sequence. Automation in various areas such as video
surveillance and servo, facial recognition, medical imaging and automsjiection
requires fast and robust video tracking algorithms. For example, Frankdetaloped a
traffic video analysis system that can track vehicles on downtown roads vagnitsan
of occlusion situations [11]. Harrell et al. developed a fruit-tracking methedtimate
the size and position of a valid fruit region in real time images to control the moton of
fruit-picking robot [12]. Boyer applied video tracking techniques to reconstrucihBtat

models from image sequences [6].
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Ideally, the image sequence of a video is continuous. For a digital devick, smal
time intervals between adjacent frames exist which makes objects mmed distance
from one frame to the next. This property is utilized by all the video trackingtalgsr
It is either represented by smoothness constraints or the speed of motion. The mai
difficulty for video tracking is that there is variation in object location andatbj
deformations. The illumination may also change over the frames, which leads to
changing gray values of the pixels of the same region in two framesl Bafull
occlusion of the object may also exist which will cause deviations to objekiniga
The video tracking algorithm can be generally categorized into twaeslaBke first is to
locate and track objects frame by frame throughout image sequence. dih@ iseto
track objects in all frames simultaneously. Most video tracking algositbelong to the
first category. They aim to find a correlation between the adjacent fr@pgsal flow
describes this correlation by displacement velocity. It approxinmagge motion based
on the hypothesis that the intensity structure of the same image regionastentfor a
short duration [5], and it assumes that every small block within the referance fias a
velocity to the next frame. A least-square technique is used to caldusatelocity field,
by minimizing a squared error under restriction of first-order derivativeéhe optical
flow constraint equation [21], or by solving equations of velocity using second-order
derivatives [24], or by solving velocity equations with combination of local esgna
[28]. A detailed introduction and comparison of different optical flow techniques can be
found in [4].

Similar to optical flow, parametric models also compute the spatial ariati

two adjacent images. However, it assumes that the optical flow within a regidrec
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represented by a low-order polynomial. This assumption is very close ty veadit the
motion between frames is mainly caused by camera motion, without displaadrtient
local individual object. The parametric model is chosen based on the estimatieabf gl
motion, such as the six-parameter affine model, eight-parameter quatodet, eight-
parameter perspective model, etc. The parameters are calculated bdmsed on t
minimization of an error metric, such as squared differences betweeaned frame and
transformed moving frame. An initial motion estimation is needed and anvigerat
scheme using gradient descent or other optimization technique is used to update the
parameters to achieve a local minimum [19, 22].

Instead of computing displacement for a region, objects in an image sequence can
be represented by object features, such as an object boundary. Thus, objectdeacking
be achieved by contour tracking. Snake, i.e. parametric active contour m@jded pn
edge detection technique that locates a spline in large gradient pixels iagavimth an
iterative energy minimization scheme. Given an initial shape, the splinkenaldijusted
at each iteration in nearby regions using Euler's method. The energgesaxternal
constraint forces to attract the spline to the object boundary and internal timcztrol
the smoothness of the curve. As traditional snake methods can only find a local minimum
of splines near the initial position, many derivative methods of active contour reve be
developed. Xu modified the external force of the snake energy equation by cwngut
gradient vector flow field, enabling a larger capture range. The splinengarge to the
expected position even if the initial shape is far away [37]. Davi et al. dededope
dynamic programming scheme to minimize the energy of the contour gitihal

minimum guaranteed. And a multi-scale strategy is used to speed up the seaf@BLtim
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In applications in video tracking, a contour will be detected first in the referieame
and the result will be the initial contour for the moving frame.

Sometimes the shape pattern of objects to be tracked is known. We can utilize this
knowledge as prior information before video tracking. A large set of training data in
sampled images needs to be derived to get this statistical informationb&8M)s to
this family and is also a contour tracking algorithm. It uses sets o&thbeints to
represent shapes of objects. The shape in a 2D image represents a pogitén a hi
dimensional shape vector space. It detects contours of objects with prior shape
restrictions computed from training data [34]. The contour to be detected is updated to
the position closer to the edge boundary using an iterative searching sttheithbe
confined into an area near the mean of training contours. Principle Componentg\nalysi
(PCA) is used to save memory and time while retaining most of the training atform
[34]. Both the advantage and disadvantage of ASM is discussed in [18] with “more active
shape model” (MASM), an improved technique of ASM.

The other category of video tracking algorithms is to track objects ineall t
frames simultaneously. Kang et al. developed an optimal graph search aldori8in
image segmentation. Instead of iterative scheme searching for axaeghum, optimal
graph search computes a surface within a 3D graph directly wittbal ghinimum of the
sum of costs of nodes [15]. The surface is guaranteed to be continuous under the
restriction of the smoothness constraint. The problem of computing this sgrface i
converted to finding the maximum-flow between two nodes. There are varioushatgorit
that calculate the maximum-flow. A pseudo-flow algorithm develdpetiochbaum [14]

and the algorithm developed by Boykov and Kolmogorov [39] both have the advantage
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of saving time and memory and are proved to be superior to traditional maxiawm-
algorithms such as the Ford-Fulkerson [9] and push-relabel algorithms [2].

To sum up, the design of a video tracking method requires consideration in all
aspects. For example, is an iterative scheme used or not? Is theplkooaim or global
optimum guaranteed? What kind of image filter is used? Is prior information negltied?
these choices depend on the property of the video image sequence to be processed. For
example, is the major component of the motion in the image global or local? Ia there
general shape pattern for the objects to be tracked? Can the objects tkduktlieac
represented by contours? What is the image quality, i.e. what is signal toatioise
(SNR)? In this work, different techniques are tested including dynamicgomnoging
with path detection, ASM, optimal graph search and parametric shape model with
dynamic programming. The goal is to develop an algorithm that bestifitgecial
application of diaphragm tracking in MVCBCT projection images. The next sectiion w

analyze the characteristics of these fluoroscopic images.
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CHAPTER TWO
MATERIAL AND METHODS

Har dwar e and Softwar e Platform

In our case, the global motion of the projection image sequence of MVCBCT is
caused by rotation of the gantry and the image detector. Using the stamafmbam
protocol, the gantry rotates over 200 degrees from 270° to 110°. Figure 1 is a picture of
the MVCBCT device used in our clinic. Instead of traditional parallel or fan $ethm
linac X-ray source produces a cone of rays with its base on the detector and d@a ape
the source. The set of open field 2D projection images are acquired at differdohposit
around the patient. The data are acquired with a 2D detector array. The ipragiess
does not need table movement.

The 2D detector is an amorphous Si flat panel electronic portal imaging device
(EPID) with resolution of 0.4 x 0.4 nfmit has an imaging area of 27.4 x 27.#anthe
patient plane and an image size of 1024 x 1024, providing a pixel size of 0.027 cm. This
resolution is enough for the motion being tracked. The distance between the source and
isocenter (Source to Axis Distance, SAD) is 100 cm and 145 cm for source and EPID
(SID) [31]. The EPID acquires one 2D projection image per degree of rotation. In the
clinic, 200 raw projection images are acquired over 200 degrees while the rosaties
in order to have sufficient data for 3D cone-beam reconstruction. So eachdranee |

image projected from a certain angle.
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Figure 1: Siemens Mvision MVCBCT device used in the Department of Radiation
Oncology in the University of lowa Hospital

The local motion is the respiratory displacement of the lung and other nearby
organs such as the liver and the heart. The diaphragm has a general curvepeatiam
up in the inferior direction and it can be delineated by a contour. It will lbastied in
later paragraphs that this general curve pattern of the diaphragm wail bepresented
by a parabola. The contrast of MV CBCT images is relatively low compared@d K
because Compton scattering provides the majority of the beam attenuation [25]. And
there are many confounding objects near the diaphragm like the contrdiatgréddeart,
spine, and treatment table which will cause deviation to the tracking process.

The total imaging time is 50 seconds which is 0.25s for each view. Typically a
patient with training takes 16 complete cycles to be observed with 200 views [31]. The

range of diaphragm motion in the superior-inferior (Sl) direction is bet@&eand 3.0
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cm. Using the respiratory frequency, the speed of diaphragm motion can betedlbyla

the following equation:

R SAD 2.1)

Viame =7
N,, SD
WhereR is the displacement of the diaphragm apex between full exhale and full

inhale framesN,,, is the number of frames for a half respiratory cycle. With this

information, we can get a rough estimate of the diaphragm motion to be tracked. For
example, if there is a typical patient with 16 cycles during the imaginggsand

R=0.75m, 12.5 frames for each cycle, i.¥,,, = 6.25frames can be derived. So

v, =0.1Zm /frame, i.e.4.44pixel /frame. Note that this calculation is based on two

frame
approximations. One is that the diaphragm motion is assumed to be at SAD distance to
the X-ray source. The second is that this equation leads to the average speetaddut i

the diaphragm cannot be exactly at SAD distance and the motion is slow athdle! i

and full exhale positions while fast in the intervals between these positions.

Dr. Siochi has developed a software application called Just Enough Dicom (JED)
before this work. The software can read DICOM files of projection imagesrted from
MVCBCT. It is developed in Microsoft Visual Basic 2008 and it provides a Windows
interface that allows users to do multiple operations such as reading, viewintagesi
and analyzing the diaphragm tracking result. All of the diaphragm traté@hgiques in
this work is implemented on this platform. A typical interface of JED is shown urd~ig

2. The projection image is shown on the right. On the left there are grids rdjmgse
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coordinates. And two diagrams of position of diaphragm apex are shown. The top one is
in the Sl direction while the bottom one is in the horizontal direction in thgepiane.
There are menu bars on the top which controls the view and diaphragm tracking. The

status bars are at the bottom indicating the frame and pixel information.

&§ JED for Point Tracking / Anonymous / CBRI0003 / 01010101 / 110228_ 578000 { CBRT0003-1-3.12.2 1107.5.7.7.85714. 30000006092814033529600001058- IHA ) QE‘

File Edit Options View FPoint Tracking

Xmax:610

1] 20 40 60 B0 100 120 (140 160 (180
S0

J

Frames: 200  Rows: 1024 |Cols: 1024

Figure 2: Windows interface of Just Enough Dicom (JED)

Computation of ROI

A projection image covers a large area, including at least one of thedndgs
adjacent organs. It is unnecessary and time consuming to search through thenatpele
for the diaphragm apex. A robust method to locate the ROI is needed. In tius Heet
technique of computing the ROI of the diaphragm apex developed by Siochi ibe@scri

[32, 29]. In Siochi’'s method, four positions of the diaphragm apex are needed to calculate
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the ROI: two full inhale and two full exhale in the corresponding respirayatgs The

two cycles are recommended to be abadlt part. Positions of the diaphragm apex in
full inhale and full exhale in 3D that define the range of diaphragm apex motion are
computed from these four points based on CBCT geometry. Then these two points are
projected into every 2D frame and a rectangle defined by the two points ldir@ae is
derived. This rectangle is the ROI for the diaphragm apex for each.fiidma procedure

of this method is illustrated in the following figure:

Inhale

Bounding
rectangle

Figure 3: The illustration of computing ROI for each frame

Image from [30]

The CBCT geometry used in this method is illustrated in Figure 4. It is a picture
showing that both the X-ray source and image detector rotate about the isackeicter
is considered as the origin of the 3D coordinates. The X and Y axes are in the gager pl
and the Z axis is perpendicular to the paper plane. First the user identifpesjduted
diaphragm apex in the flat image detector with 3D coordingey,,z,). The
horizontal distance from this point to the center of the image deted®r iBhe center of
the image detector is actually the projected isocenter in this framérStrstep is to

project user identified points onto a plane called the minified view at SA®alpiane
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parallel to the detector and has the distance of SAD to the source. The projectes] point i
(X,,Y,,2,) Which is the intersection of this plane and the line through the source and
(% ¥, Z,) - The distance fronfx,, y,,z,) to isocenter iR . From simple trigonometry,

(X,,Y,,2,) and R, can be derived fronfx,, y,,z,) and R, using following equations:

SAD SAD
Ru=Rugp Ri=Regp
Xy =R, €080y, =R, si, X, ,=R ,co8,y, =R, , sifl; (2.2)
__SAD,_ _ SAD
A TR TY
Whered, and 6, are rotation angles between the image plane an¥ xis
illustrated in Figure 4. The subscripts 1 and 2espond to two frames in different
respiratory cycles (For conciseness, Figure 4 shbws coordinates in one frame). Now
two points at the minified view at SAD are calcathtand the position of the source can

be calculated as:

Xy =—SAD-sing,;y,, = SAD- co¥, X.,=—-SAD- si¥, y,,=SAD- co8, (2.3)

Now for each frame, a line can be determined bysthece and point in minified
view. Ideally, if the position of diaphragm apeXiweach the same position in every full
exhale and inhale time, the lines in these two &smill intersect with each other.
However, there is some irregularity and movemenmindurespiration even for a trained
patient. And the motion is sampled at 0.25s by M\BIBThese factors lead to the fact
that the two lines are not coplanar. In order foudate the position of the diaphragm

apex in 3D, we project these two lines in the pgb@ne and calculate the point of
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intersection in 2D to determine, andy, . For the Z direction, we use the average of the

two values ofz, at (x;,y,) along lines. Sax,,y,,z,) can be calculated as:

rnl:Xpl_Xsl_ :sz_xsz
ypl —Ya yp2_ Ys2

Xso = Xa — MY+ MyYs,q.

Xy = Xg + MYy = Vo) Vg =

m-m, (2.4)
Yi1 =% SiNG, + Y, COP, Y, ,=—X; Si,+Y, CO8,
(SAD -y,) (SAD-y,) +
s f1 2y Zas = SAsz sz;zdzzdlzde

Wherem, m,, y,, Y,, are temporary variables amj andm, are the inverse
of the slopes of the two liney,, andy,, are the distances ¢k,, y,) to the plane on
the minified view. So the actual positions of dieggim apex during full inhale and full
exhale are derived. For each frame, if we projeesé two points to the detector plane,
we can use the projected points as the diagonateerf a rectangle. This rectangle is
exactly the ROI we want. For an arbitrary framehwitation angle?, the coordinates of

the projected points can be calculated as

X, =—SAD-sind;y, = SAD - co¥

X~ %
rnS:—

Ys = Yy
Y; =X, Sind +y, co (2.5)
R = Xy — MYy
p_ . )

cosfd—m, sing

3D _ SD

R T sy,
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Where (R, z,) is the projected position of diaphragm apex ihéxhale or full
inhale in the image plane. Note that as the ofigir8D coordinates is the isocenter, the
origin in the detector plane is the center of thage, i.e. the isocenter projected on the

detector plane.

Point in

@ ~— Source View
¥s,¥s, Zs \\

e Point in
N~ Patient -

~ | - P
S, otELYL I T

minified \ 1%

viewat -5

Flat Panel
imager

Figure 4: CBCT geometry for calculating ROI

Image modified from [30]

Image Filtering

The following figure shows one frame of the oridi/CBCT projection image

in the region around the ROI in one frame.
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Figure 5: Region near ROI (green rectangle) inagggtion frame displayed in JED

It can be observed that the CNR of MVCBCT is reklif low compared to that
of traditional CT images. An approximate contouthsf diaphragm can be seen by the
eye, but the edge is blurred. There is no distinatrast between bright lung area and the
dark area below. And the noise and other intereoibjects in the image makes
diaphragm tracking more difficult. Image preprodegdechniques are required to
enhance the diaphragm contour while reducing remskeother interference. The
selection of image filters depends on the requirgro€applications. The balance
between the quality of filtering and the runningei is always a matter of concern.
Convolution kernels such as average filters or Gandilters [38] are widely applied in
image processing applications with low computaiod good noise repression
characteristics. However the structure of intesesh as an edge is also blurred.
Statistical filters such as Median smoothing presgedges [17], but the sorting process
takes much time. Nonlinear filters such as anigtrdiffusion and curvature flow are
also edge-preserving. However, these filters areernomputationally expensive [27].
Generally, the more features of interest a filean preserve, the more time it will
consume. In this section, Gaussian and anisotdifficsion filters implemented in JED
will be described and compared. Then the techriguenhancing the diaphragm contour

used in JED will be discussed.
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A Gaussian filter has a Gaussian function asliesfivindow. For 2D images, it

has a kernel with the following mathematical expi@s:

X2+y2 X2 y2

1 2 T, 2 T, 2
a(x,y)= e e % = 27mze 20" . > (2.6)

Equation 2.6 also shows that a 2D Gaussian fiiarbe decomposed into the
product of two 1D Gaussian filters. This propenyaleles us to decompose the 2D
convolution into two 1D convolutions, which will\gamuch computation time. For
example, assume that the size of the Gaussianifilfd x N . For each pixel, the 2D
convolution involvesN x N multiplications andN x N —1 additions. With the
decomposition, each 1D convolution only requibésmultiplications andN -1
additions. The sum i2N multiplications and2N — 2 additions.

The convolution of Gaussian filters can be replamgdultiplication in the
frequency domain using Fast Fourier Transform (F&J its inverse. However, FFT
will be significantly faster than the convolutionlp when N is sufficiently large.

Anisotropic diffusion filters encourage intra-regismoothing while inhibiting
inter-region smoothing. It uses an evaluation fiomctvith locally adaptive diffusion
strengths to decide whether an edge should be sedor enhanced. It has the

mathematical expression:

§| (xt) = V(e(x,t)VI (x.1)) (2.7)

Wherel (x,t) is the intensity of a MVCBCT projection image,refers to the
image coordinatéR, z), t refers to the iteration step aw(x,t)is the diffusion

evaluation function which monotonically decreasés the image gradient magnitude.
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From this equation we can observe that the anigitgiffusion uses an iterative scheme

that calculates an update to the pixel intensighdéane. The evaluation equation is:

c(x.t) = f (VI (xt)) 2.8

It allows for locally adaptive diffusion strengtihdany monotonically decreasing

continuous functions suffice. The one applied iDJ&

c(x.t) = exp- Mf ) 2.9)

WhereK is a diffusion constant and it decides the behadiohe filter. It should
be chosen carefully to correspond to gradient miades produced by noise and less than

the gradient magnitude of the edges. The funcsgsiatted as follows:
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Figure 6: Plot of diffusion evaluation function afisotropic diffusion applied in JED
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If we combine bothc(x,t) andVI(x,t), we can define a flow function as:

Dd(x,t) =c(x, t)VI (x,t)

@1

Then we can rewrite the equation of anisotropitudibn as:

0
1D =V@(x1)

@)1

The flow function is plotted as a function of thadjent as follows:
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Figure 7: The flow function of the anisotropic difon filter applied in JED

It can be observed that the flow increases withgtiaglient strength to the point

where VI =~ K, then decreases to zero. This behavior impligstiieadiffusion process

will increase the intensity of pixels witfil < K as the derivative of the flow function is
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positive. The intensity will be reduced for theglxwith VI > K as the derivative of the
flow function is negative. Noise will be removedadually as the intensity of pixels is

updated iteratively. Typically 5 to 20 iteratiorre meeded to evolve the raw projection
image into a smoothed and enhanced one [27]. Budt i&f the filtered image after the

Gaussian filter and the anisotropic diffusion filie shown in the following figures.

Figure 8: Original 400%200 region around ROI in ¥GBCT projection frame (Patient
CBRTO0003, frame 2)

Figure 9: The region filtered by a 11x11 Gaussianathing filter.c =5.0
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Figure 10: The region filtered by an anisotropicusiion filter after 20 iterationsK =15.

After filtering, the edge structure of the diaphrats easier to identify using an
edge extractor. The edge extraction technique eghphi JED considers both the gradient
amplitude and the gradient direction. A cost vatuassigned for each pixel based on the
gradient amplitude and direction, representingptfedability of this pixel to be the
diaphragm contour. First, the larger the gradiempléude is, the more likely that this
pixel is on an edge. Second, the closer the gradiegction is to the anticipated value,
the more likely that this edge is a diaphragm cont®he cost function for each pixel can

be expressed as:

a(x,y)=|VI(xy)|-F (arctan% )X (2.12)

Where g(x, y) is the cost value for pix€lx, y). In the following paragraphs, the
expressiofix, y) will be used instead AfR, z) (image detector coordinates) for clarity.
I (x,y) is the intensity for(x, y) and F is a function of the gradient direction angle and
horizontal position. It returns a difference angleadians between the gradient direction

and an ideal direction at this horizontal positidbhe ideal direction is derived from the
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mean shape of a set of training samples of diaphm@mtours. The size of the cost
function region (CFR) is set &00x 20C typically. The calculation of the ideal direction

and the illustration of training shapes will begyvn the next section.

Figure 11: Cost image after Gaussian filter anceezdraction, CFRI00x 20C

Shape Analysis

With image filters and edge extraction techniqules,diaphragm contour can be
well detected for high CNR frames. However, thereaise and interference that will
make edge tracking process lost for these occadirits shape information will provide
additional knowledge that helps confine diaphragahling to the anticipated regions
and restricts the wrong cases. The training daganerated from diaphragm shapes in 8
different patients. 5 frames which well represerntexigeneral pattern of the diaphragm
are selected for each patient. Each shape cor@ipsints equally distributed on the
diaphragm contour, which are identified by a huraarthe JED platform. Each point in
one shape corresponds to points in other shapehwhve the same position on the

diaphragm. The set of training shapes are shoviollass:
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Figure 12: Uniformly scaled and aligned trainingysés of diaphragm contours (the
coordinates are aligned and inverted here compartt pixel coordinate system)

And the mean shape of the training samples issdlewn:
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Figure 13: Uniformly scaled and aligned mean stadfeining samples
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The ideal direction for each point in the mean shiggalculated as the normal of
this point, using the coordinates of two adjacennts. For a poin(x,Y,), the normal

can be calculated as:

Xa— X
gy (%) = — L (2.13)
el 5 Yia—Yia

Note that after we get the training shape datastlée and rotation angle of these
shapes are not the same. In order to analyze #peshformation, it is necessary to align
and uniformly scale these shapes. The most comnabricthat measures the error of

aligned shapes is the sum of distances:

D=3 —R\Z (2.14)

Where x is the mean shape of the training data aqds one certain shape. For
shapes in 2D space, there are four parametersdaltidated to minimize the sum of the
distances: the scale factsr the rotation angl®, and the translation factog , and

Yean - 1he alignment follows the equation:

T = +s| . (2.15)
y Yiran -sin@ coY )\ 'y

There are several methods for calculating thesanpeters: calculating rotation
angle after uniform scaling, calculating rotatiolgke and uniformed scale
simultaneously, or projecting shape vectors int@égt space to avoid non-linearity [8].

The first method is applied in this work. In thigtnod each shape is translated to the
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position where its centroid is at the origin. Tteeg uniformly scaled to have the same
norm. The rotation angle is calculated using atiegaare method with singular value
decomposition (SVD) [8].

The calculation of alignment uses an iterative adgm illustrated on Page 14 in
Cootes’ book [7]. For each iteration, the mean shaalculated. A reference shape is
arbitrarily selected and the alignment is calculdte all the other shapes. The mean
shape is updated in the next iteration. Typic&lyo 3 iterations are enough to align the
shapes into uniform positions. The aligned shapé&siming samples are in figure 12.

As one diaphragm contour has 50 2D points, it @andmsidered as a point R'
wheren=100. As the centroid, scale and the rotation angliefshape is fixed, the
shape vector has 96 free parameters. We wishddHhmgeneral pattern inside the
training shapes. However, it is hard to identifg trattern in high dimensions. Principle
Component Analysis (PCA) is a statistical technitha can reduce the number of
dimensions of data without much loss of informatihile highlighting the similarity

and differences. Each shape can be expressed as:

S:(Xl’Y1'X21Y21X3!y3’-'Xso’ysoj (2.16)

PCA is accomplished by calculating the eigenveciois eigenvalues of the
covariance matrix of the training samples. The daw&e matrix is calculated from all

the 40 training shapes. It has the expression as:

1
COV=—— (8,8, 831840 )61 52 851 o) (2.17)
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Note that all the shape vectors are aligned. Incase,cov is a 100x100
symmetric matrix. As the covariance matrix is spositive definite, all the eigenvalues
of cov are non-negative. In fact, each eigenvectoraf is one component of the data
set. It represents a direction in 100 Dimensiortep@he eigenvalue represents the
variance of data along the direction determinethleyeigenvector. The eigenvector with
the highest eigenvalue is the principle componéerg.the most significant relationship
between the data dimensions.

Now if the eigenvalues are sorted from highesbowelst, the components in order
of significance are given. The process of redudingensions is to ignore the
components of lesser significance, while keepimgntiore important ones. If the
eigenvalues of ignored eigenvectors are smallinfoemation is not lost too much. In

our case, a few eigenvalues make up most of thanaa of the data set.
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Figure 14: 100 eigenvalues of covariance matritcabhing shapes. The horizontal axis is
the number of eigenvalues sorted from lowest tbdsg) the vertical axis is the ratio of
this eigenvalue to the sum of 100 eigenvalues.
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In this figure, the largest eigenvalue takes u@%s8of the sum of all the
eigenvalues, with the second 6.64%, the third 3,489 the fourth 2.62%. In fact, the
largest 12 eigenvalues take up 98.2% of the sumcakiegnore the other 88 components
and just use these 12 eigenvectors to represedatheset without much loss of

information. A linear model with 12 free parametsrgstablished as:

X = X+ ®b (2.18)

Where x is the shape generated by this linear model, wisiehvector in 100
dimensional space_< is the mean shap& is a matrix composed of the eigenvectors we
select with the expressioh = (v,,V,,V,,...,v;,) andb is the parameter matrix for the 12
directions determined by 12 eigenvectors with (b, b,,b,,...b,,J . This linear model
cannot represent all the shapes in 100 dimendtarsan arbitrary shape, this linear
model will find the shape closest to it by mininmgian error metric such as least squares.
The parameterb will be calculated based on this metric for mirgation. The
advantage of prior shape information is that wereasirict parameters df to confine
the contour to be tracked in a reasonable sHpe3V4, is applied in JED, wherg, is
the eigenvalue corresponding to this component.

Based on the established linear model of equatib®, 2ASM can be applied in
diaphragm tracking. Given an initial instance afigphragm shape, ASM updates and
confines the shape iteratively until convergenoaiiyy each iteration, for each point in a
shape, ASM looks along a profile normal to the ghlapundary through this poiri2l +1
pixels along the normal around this point are sedrnn order to find the pixel with the
minimum correlation (figure 15). For each pixelragahe profile normal, the correlation

is calculated as a Mahalanobis distance usingdlf@ing equation:
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Shape Boundary

Frofile normal to boundary

Figure 15: At each shape point, search along al@mdrmal to boundary

where g, is a vector containingk + 1 elements. It represents the derivative of intgnsit
in adjacent pixels along the normal directionchrss for2k + 1 adjacent pixels along the
normal direction.§ is the average derivative of intensities near ploigit in training
samples and, is the covariance matrix af of different shape points. The matching

procedure is illustrated in the following figure:

Sampled image
profile

Flexible model .
for grey-levels '
about pointi —>

Fit of model to - '
sampled profile.

(Lowest wins) —
|dX;|

Figure 16: Searching along the profile to find best fit, k=2 and| =6

Image from Page 39 of [7], by permission from th#har
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Optimal Graph Search

Like ASM, many methods in video tracking use itmaschemes to find a local
optimal solution. If the object function to be minzed is convex, the local optimum is
then the global optimum. However, this is not algvéhye case in real applications.
Optimal graph search methods aim to find a suria@e3D graph with a globally
maximized sum of weights of nodes. As the projectiata form a sequence of 2D
images and can be considered as a video, we call @& frames to construct a 3D
graph where each vertex corresponds to one pixektertain frame with a weight
calculated by equation 2.12. The mathematical esgpva of optimal graph search and
the theoretic framework behind it can be seen inaidi Chen’s paper as the optimal V-
weight net surface problem with smoothness comag§86]. For completeness we will
describe the concept as the following.

Given a 3D multi-column grap® = (V,E) whereV represents the set of vertices
and E represents the set of edges of this graph, eatéxwesV having a real-valued
weight w(v) . Find a netN in G such that the sum of the weigh{N) = ZVEWN)W(V) 5
minimized. The nelN satisfies a smoothness constraint. For every tdes
Vi(X Y1, 2.V, (X, Y 2,2 )€ N in adjacent columns, i.éx — X,|+|y,— y,| =1 where
X, X%, Y, Y, are integers which represent the position of tleran in the base graph and
z is the coordinate of a node in a column identibgdcoordinategx, y), the difference
of the position of the two nodes in each columrusthoot be larger than a regulated

constraint:

|2, — 2| < Axif [x,— x| =1

. 19)
|2-2z|<Ayif |y, -y =1
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where Ax and Ay are smoothness constraints alongxtland y directions. The problem
of single optimal surface detection is identicalite maximum closed set problem [15].
The maximum closed set problem is to find a claaduset of node¥ €V such that the
sum of weights for this subset is maximized. Tinglei optimal surface detection
problem can be easily transformed into a maximuweed set problem without changing
the graph. Withg(x, y,z) representing the original cost of the nodes, a cast

c(x,y,z) for the maximum closed set can be calculated as:

_|a(xy,2),z2=0
cxy.2)= {g(x, y,z)—g(X,y,z— 1),0therwise (2.21)

The maximum closed problem can be solved by a mimraut algorithm on a
relateds,t graph [13]. This graph is denoted By and it is derived by adding a source
node s and a sink nodé on the original graple . All nodes with positive weight are
connected frons with a capacity of the node weight @, while all nodes with negative
weights are connected towith a capacity of the absolute value of the nadeght in G .
The arc capacity in the original gragh is set to infinity. It is proved that the maximum
closed setS in G corresponds to the s&in the minimum cut ofG, [13].

There are many algorithms for the minimum cut peail The running time of
traditional algorithms such as the Ford-Fulkersgorgthm is O(E- f) whereE is the
number of edges i, and f is the maximum flow. The general push-relabel allgm
is O(V°E), whereV is the number of nodes i@, . Boykov and Kolmogorov proposed a
method that is, at worsQ(V°EC) whereC is the number of minimum cytbut much faster
in real applications [39]. Hochbaum proposed a gadlow algorithm with complexities
O(VElogV) [14]. In JED a former library of Boykov and Kolmagv’s algorithm is
applied. The diaphragm contour in 200 frames candbected simultaneously. The

400x 20C CFR is resampled to 20x 30 region. The smoothness constraint of pixels in

www.manaraa.com



31

this resampled image is 1 for tlxedirection and 2 (equal to 13.3 pixels for origiG&R
pixels) for thet direction.(x,y,t) is used to represent coordinates instea(koy, z) to
indicate that the 3D graph is an image sequencap@red to the average velocity
4.44pixel /frame of the lung’s motion, this intra-frame smoothnessstraint is more

appropriate considering velocity variations.

Dynamic Hough Transform

Optimal graph search establishes the intra-frada¢éi@aship by smoothness
constraints. However, it does not account for tleba shape pattern of the diaphragm
contour. We would like to find a method that con@sirthe prior shape knowledge and
the intra-frame smoothness constraint. The previoeitiods on parametric models in
video tracking are mainly focused on motion estiamtrather than shape matching [19,
22, 23]. A method developed by Baker and Barnssafpparametric model onto a 3D
Cochlea image [3], but no intra-frame constrairgpgplied in the registration process.
Another method estimates the object motion by &48Dgh transform of image motion,
but this method can only detect constant motiof. [A@lynamic Hough transform was
proposed that can detect arbitrary motion by detget trajectory in a Hough image [41,
42]. However this method assumes the shape of takjaosariant throughout the frames.
In this section a method based on the dynamic Henagisform that can detect a
deformable object in arbitrary motion through amge sequence is described.

This method assumes that the diaphragm can besesyiesl by a parabola with an
axis parallel to the Sl direction. The parabola lbardescribed by a curvature parameter
a and a vertex positio(x,, y,) . For each shape pointeV with horizontal coordinate

X, whereV is the point set of the parabola, the coordinaftes can be represented as:
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V(%) =[x, a(% = %)+ o] (2.22)

The goal is to choose appropriate parametees xf, y, to match this parabola
template. For a given set of parameters,of, y,, the metric function should be able to
represent the propensity of this parabola to belttyghragm contour. The matching

metric function is designed to be the sum of th&t oball the pixels on the parabola:

M (2%, %) = 3. 904 () 229)

Wherew is the CFR width. For each frame, a reasonablgeréor each
parameter of the parabola can be given: its vesthexild be within the ROI, while the
curvature parameter satisfie0005< a < 0.00: based on experience. If the matching
metric for every combination of parametexss,, y, within the range is calculated, a 3D
Hough image is generated such that every nodesmgthph(a, X,,y,) represents a
parabola with a weight of metri®l (a, x,, Y,) . If 200 Hough images are stacked together
from frame 1 to frame 200, a 4D metric graph isstaucted. Each node is represented by

(a, %, Y,,t) and has a weigh¥l (a, x,, Y,,t), wheret is the frame index.
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Figure 17: 3D Hough image sequence, each voxdiohasoordinatega, X,, Y,,t)
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With the 200 Hough images, the problem of diaphragtection in 200 frames
simultaneously becomes the problem of finding aeléor each Hough image. We wish
to find voxels with as large a metric value as gmesFrom ideas in optimal graph
search, we can also incorporate intra-frame cansstaAs there is only a small
deformation of diaphragm contours between adjaftantes, the paramete(a, x,, Y,)
of the diaphragm parabola does not change too nwelcan restrict the difference of
parameters between adjacent frames to a reasdmatbléVe can consider this problem
as finding a continuous path traversing througibayfaph composed of a 3D Hough
image sequence. This path intersects with each @yRkHimage once with a maximum
sum of weights. “Continuity” requirements of thiatp are satisfied by smoothness

constraints. The mathematical statement is:

200 |a[ - at71| <Aa
Max) M @ Xy Yo £ ) SUBJECt 10 1[x, —Xoq_y| < AX, (2.24)
1
‘yOt - yO(t—l)‘ <AY,

The method for calculation of the maximized fitigmamic programming with
path detection. Dynamic programming solves probleyndecomposing them into
overlapping sub-problems iteratively. It is muchktéa and uses less memory than naive
methods such as exhaustive search. The 2D cadgrfamic programming is well
explained in Sonka’s book for applications of 2Cage edge detection [33]. In this work
the dynamic programming scheme is extended for ghetirction in a 3D Hough image
sequence. The process of dynamic programming D iandge sequence is described by

the following algorithm:

Given M (a, %, Y,.t):

initiate a cumulative matrix CM (a, X,, Y,.t),
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initiate three back tracking matrices A(a, X,, Y,.t), X(a X%, ¥,:t), Y(a, Xy, Yo.t),
initiate three arrays ar (200),xr (200)yr (200 for recording the result,
CM(a,%,, Y, 1)=M @,%,,Y,,1) for every 0.0005< a< 0.00:, (X,,Y,) within ROI
For t=2to 200

Aa', A%, Ay, '=argmaxCM @+Aa %, +AX, Yo+AY, t— DM & %, Y, t, |

stAa]<|Aal|Ax, |<|Ax| |Ay, | <|Ay

CM (a,X,,Y,,1)=CM (@a+Aa', X, +AX, Yo+ Ay, 't —IH+M @ X, ¥t .

A(a, %, Y, t)=Aa’

X(a, Xy, Yo,t) =A%, "

Y(a, %, Yo t) =4y,
end (for).
ar(200),xr (200)yr (2003 argmagM af (2009, (209), @0200))
Fort=199to0 1

ar(t)=ar(t+)-A@rt+21),xr ¢+21),yr ¢+ Dt+ 1

xr)=xr(t+1)— X(@rt+21),xr ¢+21),yr ¢+ i+ 1

yrt)=yr(t+D)-Y(@r t+2),xr ¢+ 21),yr ¢+ i+ L
end (for).

The algorithm calculates the path with the maximwamght from the first Hough
image to every voxel. The path for the voxel infine Hough image is simply itself. For
the other voxel, it looks around for each posgiskxlecessor in the previous Hough
image and chooses the voxel with the maximized ktelg this way it maintains a 4D
array CM (a, x,, Y,,t) to record the cumulative weights. When the algaridearches to
the last Hough image, the path with the largest etimeights can be easily found as the
largest cumulative weight voxel in the last Hougtage. The predecessor of this voxel

along the path can easily be traced back to teeffame.
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The algorithm scans each voxel and each of itsgmebors one time. the total
running time for this algorithm i©(r (a)r (x,)r (y,)AaAxAy,) wherer(:) means the
number of possible values of the variable inside. &, the value is sampled with a
parameter grid spacing of 0.0003. 2 fgrand 5 forx,. The smoothness constraint
between adjacent frames is sel@pixel / frame, which is much larger than the mean
speed of diaphragm motiod @44pixel /frame) and close to the value used in the

optimal graph searcii8.3pixel /frame).
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CHAPTER THREE
RESULT AND DISCUSSION

Validation of Different M ethods

In this work, different diaphragm tracking meth@uale tested, including boundary
tracing as dynamic programming in 2D image(2D D¥§M, optimal graph search
(OPT), optimal graph search with edge weight orpedrROI (OPT-VCE) and dynamic
Hough transform (DHT). To evaluate the accuracthete tracking methods, we
compared the diaphragm apex identified by a humperé against the diaphragm apex
back projected into 3D room coordinates along thaio-caudal axis. The error is
calculated as the distance between the expertfi@enpoint and the algorithm generated
point along the cranio-caudal axis. Only the crazaadal axis was tested because of the
difficulty for the human expert to identify the lwontal coordinate of the diaphragm
apex in views where the diaphragm is flat.

To get the position of the diaphragm apex in 3Drdmates, we have to first
identify the diaphragm apex in 2D image planes.Bdf, the diaphragm apex can be
easily derived as the parabola ver{gy, y,) . For other methods, 200 apex points are
found simultaneously by searching for the maximdrthe sum of heights of all the
possible positions in 200 frames which satisfiessimoothness constraint. Dynamic
programming is used in this searching process.

The second step is to estimate the position oflizgghragm apex in 3D. Unlike
the ROI computation where the diaphragm apex aefliale and full inhale can be
determined by two user-identified frames eachdiaphragm apex in 3D has to be
estimated from one frame. An interpolation metrsdsed to calculate the, y,)

position of the diaphragm apex for an arbitraryrfea using the equation below:
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2y~ 7, Z,~ %, G4
Yo = Yar 22t Yo o2
V2,2, V7,17,

Where the subscripts 1 and 2 represent the codedimd full exhale and full
inhale points, respectively. Since there is littletion in x and y, the error of using this
interpolation method is at most 1% [30]. Witk,,y,). z, can be determined by

calculating the similar triangle between the madfiview and the image plane:

y; =—X%,SInd+y, coy
SO‘D_yf ZB
=—Z
SAD P

Z,
The meaning of all the variables in 3.1 and 3ihéssame for those in chapter 2.

In this work the five methods are experimented bipatient data sets and the mean

squared error for each patient image containingf@dfies are determined as in the

following diagram:

12 @ 2D DP

10 W ASM
OcPT

8 O CPT VCE
B DHT

Error in mm

Al nhhab bl

ED1L ED?2 ED3 LHL LH2 LH3 M1 M2 M3 Mi4 RJ1 RJ4 SD8 SD2 SD1 TS1 TS2 TS3 WB1 WB2 VB3

Figure 18: Mean squared error of 5 methods on #&miamages
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And the following diagram and table shows the mesach standard deviation of

the error:

Eror inmr
O P N W » 01 O N 00 ©

2D OP ASM aeT aPT MCE Dall

Figure 19: Mean and standard deviation of the doo21 patient images

2D DP ASM OPT OPT-VCE DHT
2.680+1.963 5.589+2.170 2.986+1.299 2.716+1.156 1.707+1.117

Table 1. Mean and standard deviation of the eop21 patient images

It can be seen that DHT performs better than theraechniques with a smaller
mean and variance of error. 2D DP, OPT and OPT-¥feHess accurate than DHT but
the error is stable. The error of ASM is relativigyge as it loses track of the diaphragm

in many frames. Some examples of the diaphragnmooontletected by these methods

are illustrated here:

www.manharaa.com




39

Figure 20: Diaphragm detected by DHT, a high cattimme (left) and a low contrast
frame with stripe artifact (right)

Figure 21: Diaphragm detected by DHT, a frame wathfounding objects of heart and
table (left) and a frame with overlapping lunggft)

Figure 22: Diaphragm detected by 2D-DP:, a franté witerference of a bright area on
the top (left) and a frame with overlapping lunggtt)
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Figure 23: Diaphragm detected by ASM, a clear frfleft) and a frame with
overlapping lungs (right)

Figure 24: Diaphragm detected by OPT, a frame initrference of a bright area (left)
and a frame with overlapping lungs (right)

Figure 25: Diaphragm detected by OPT-VCE, a frantle interference of a bright area
(left) and a frame with overlapping lungs (right)
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It can be seen that an edge close to the diaphcagfuses the algorithms as it
could be considered as the true diaphragm con@@nly. DHT is not sensitive to local
interference as it requires the parabola to bedpuile the other algorithms can choose
arbitrary paths for the contours. For the DHT ailpon, the use of the global minimum
helps to distinguish between similar features. pti@meter space for, was put on a
coarse grid at 2 pixel intervals, and at isoceatgixel is about 0.27 mm, a systematic
error of about 0.3 mm is present (this can be ofesenear the full exhale points at the

bottom of the graph in figure 26).

720

¢ algorithm
700 j expert

680

660

640

620

600

0 50 100 150 200

Figure 26: The vertical coordinate in the imagenplplotted against frame number for
the expert (pink line) and DHT algorithm (blue pisin

Running Time

As the algorithms developed in this work will bepilmented in clinical
application, the running time is an important nrattieconcern. The diaphragm detection

for 200 frames should be accomplished in less tmenminute. Generally, the cost of
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less time is less accuracy. However, this is neags the case and with appropriate
algorithm design and implementation, high accuamy a reasonable running time can
be achieved simultaneously. This section expldresunning time in the methods
applied in this work. The running time tested iis twork is on a laptop with Intel dual-
core T2300 1.66GHz CPU and 4G RAM in Microsoft \dkBasic 2008 debug mode
with Windows XP.

The Gaussian filter is faster than anisotropicuditbn. Filtering a single frame
takes about 2.90s for anisotropic diffusion withit2®@ations, while only 0.03s for an
11x11 Gaussian filter. The sum of time used iefiitg 200 frames will be up to 10
minutes for anisotropic diffusion, and only 6s flee Gaussian filter. Considering the
clinical requirement, the anisotropic diffusiortdi is inappropriate. The Gaussian filter
is applied in the preprocessing procedure.

The running time for computing the 400x200 CFRuoew 0.1~0.15s for each
frame. This filtering process is required by a# thethods. The running time on 200
frames is about 20s, which should be taken intowuic

The running time for the optimal graph search swly.5s for a 3D graph of
30x 30x 20C nodes using Boykov and Kolmogorov’s method [39kifig into account
20s for filtering, the total time should be 30s,ilor ASM and 2D DP, the times are
48s and 42s, respectively.

For DHT, the running time of calculating the weggbf nodes in the 3D graph of
one frame is about 0.05s. The time for calcula#@ frames of the CFR and 3D graph
takes a major part of the running time which tak@s. The time for finding the
maximum path is 19s. The total time required by Dsi%2s, which satisfies the clinical
requirement, though it is slower than the otherhoes.

Note that the speed will be faster in a clinicgblagation than the one tested on
the laptop. One reason is the higher performantieeoflesktop computer used in the

clinic. The second is that JED will be executedpplication mode rather than debug
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mode, where the development environment perforimsraasks. For example, the
analysis of a CBCT by DHT can be done in about®8ds on a 2.66 GHz Intel quad-

core 2 CPU, compared to 52s for the laptop.

Discussion and Future Work

DHT is the most accurate algorithm among the fiwthuads tested in this work.
However, several issues should be further congiderenplement DHT in a real clinical
application.

First, there is some human subjectivity for theekpmlentification in the cranio-
caudal direction. The error between the algoritimeh the human has two components:
One is the systematic error generated by the altgoyiand one is caused by the variation
of the human’s subjectivity. In order to estimdtis tvariation, a true gold standard needs
to be established. The diaphragm apex should Iifieéel by more human experts in
order to get the difference between humans. Bynggtiis variance, we can know more
about to what extent the result achieved closeitoan identification.

For MVCBCT images, the motion speed is slower kirfinale and full exhale
phases, while faster during the intermediate phasspecial case is that there is a large
displacement between the first two frames becatideeslower initial gantry rotation
speed. However, the smoothness constraints applgatimal graph search and DHT are
all constant. These constraints are appropriatthtofast motion speed, but unnecessary
for the slow one. An adaptive smoothness constaicdnsidered. In this scheme the
algorithm may go through the 200 frames in two pas$he first pass is to get the phase
information of the patient’s respiration. Then @ajgtive smoothness constraint can be

determined by respiratory phase. The constraimseaset smaller for full inhale and full
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exhale phases, and larger for the intermediategshd$ien the algorithm will run a
second time to locate the diaphragm accuratelydoas¢hese constraints.

As a matter of fact, the parabola model can alscobsidered as a shape vector
Sparaboia = (X1 Y10 X2, Y2, X5, Y 5,--X 50, 5) iN 100 dimensional space. But the parabola model
cannot be represented by linear equation 2.18 Becaus dependent o, . So instead
of a line, the parabola model represents a suifat@0 dimensional space. It is hard to
calculate the variance of training data to evaltimeperformance of parabola model.
From the observation of the tracking result, theapala model matches most diaphragm
contours well. But there are few cases where tapesbf diaphragm is deformed due to
pathological changes. More parameters should bgidered to represent more various
shapes of diaphragms for these cases.

We also notice that ASM performs poorly in this lagadion. It loses track in
many frames where the initial shape is too far aft@y the expected structure and the
shape is trapped in a local extremum. An even wease is that the diaphragm contour
converges into a chunk, as each shape point sedi@hgixels along its normal direction.
A multi resolution technique may resolve these [ais. Using an image pyramid, the
shape is first detected in a coarse image, theémekfn a series of finer resolution images.
This technigue leads to a faster algorithm andss likely to get stuck on the wrong
image structure [7]. It can also be applied to atgms of optimal graph search and

dynamic programming.
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CHAPTER FOUR
CONCLUSION

We have developed several algorithms for diaphrdgtaction in 2D views of
cone-beam computed tomography (CBCT) raw data.elTagmrithms are tested on 21
Siemens megavoltage CBCT scans of lungs and th& iresompared against the
diaphragm apex identified by human experts. Ambege algorithms dynamic Hough
transform is sufficiently quick and accurate fortran determination prior to radiation
therapy. The diaphragm was successfully detectatl 21 data sets, even for views with
poor image quality and confounding objects. EaclCTBcan analysis (200 frames) took
about 38 seconds on a 2.66 GHz Intel quad-corel2 CRe average cranio-caudal
position error was 1.707 + 1.117 mm. Other direiwvere not assessed due to

uncertainties in expert identification.
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